plusMinus: plusMinus

Description Usage Arguments Value Author(s) Examples

Description

function for plusMinus algorithm

Usage

1
2
3
4
5
6
7
plusMinus(X, y, lambda = NULL, tuningpar = "nfeatures", standardize = FALSE, 


    directionality = "posneg", ties.method = "average", votingthresholdquantile = 0.5, 


    modeltype = "plusminus")

Arguments

X

gene expression matrix

y

response variables

lambda

lambda

tuningpar

tuning parameter

standardize

standardize or not

directionality

directionality

ties.method

ties.method

votingthresholdquantile

votingthresholdquantile

modeltype

modeltype

Value

returns regression coefficients

Author(s)

Yuqing Zhang, Christoph Bernau, Levi Waldron

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
set.seed(8)


library(curatedOvarianData)


data( E.MTAB.386_eset )


eset <- E.MTAB.386_eset[1:100, 1:30]


rm(E.MTAB.386_eset)





X <- t(exprs(eset))





time <- eset$days_to_death


cens <- sample(0:1, 30, replace=TRUE)


y <- Surv(time, cens)





beta <- plusMinus(X, y)


beta

simulatorZ documentation built on Nov. 1, 2018, 2:25 a.m.