Description Usage Arguments Value Author(s) Examples
the driver function to perform three-step bootstrap resampling
to get independent genomic data sets
1 2 3 4 5 6 7 | simBootstrap(obj, y.vars, n.samples, parstep, type = "two-steps",
balance.variables = NULL, funSimData = simData, funTrueModel = getTrueModel,
funSurvTime = simTime)
|
obj |
a list of ExpressionSet, matrix or RangedSummarizedExperiment |
y.vars |
a list of reponse variables, elements can be class Surv, matrix or data.frame |
n.samples |
number of samples to resample in each set |
parstep |
step number to fit CoxBoost |
type |
whether to include resampling set labels |
balance.variables |
covariate names to balance in the simulated sets |
funSimData |
function to perform non-parametric bootstrap |
funTrueModel |
function to construct true models in original sets |
funSurvTime |
function to perform parametric bootstrap |
a list of values including:
obj.list = a list of simulated objects the same type as input
indices.list = a list of indices indicating which sample the simulated sample is in the
original set
setsID = a vector to indicate the original ID of simulated sets, if
type=="original", setsID should be 1,2,3,...
lp.list = a list of true linear predictor of each original data sets
beta.list = a list of true coefficients used for simulating observations
survH.list = list of cumulative survival hazard
censH.list = list of cumulative censoring hazard
grid.list = list of timeline grid corresponding to survH and censH respectivley
Yuqing Zhang, Christoph Bernau, Levi Waldron
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | library(curatedOvarianData)
library(GenomicRanges)
data(E.MTAB.386_eset)
data(GSE14764_eset)
esets.list <- list(E.MTAB.386=E.MTAB.386_eset[1:200, 1:20], GSE14764=GSE14764_eset[1:200, 1:20])
rm(E.MTAB.386_eset, GSE14764_eset)
## simulate on multiple ExpressionSets
set.seed(8)
y.list <- lapply(esets.list, function(eset){
time <- eset$days_to_death
cens.chr <- eset$vital_status
cens <- rep(0, length(cens.chr))
cens[cens.chr=="living"] <- 1
return(Surv(time, cens))
})
simmodels <- simBootstrap(obj=esets.list, y.vars=y.list, 10, 100)
simmodels$obj.list[[1]]
# balance covariates
simmodels <- simBootstrap(obj=esets.list, y.vars=y.list, 10, 100,
balance.variables="tumorstage")
rm(esets.list, simmodels)
## Support RangedSummarizedExperiment
nrows <- 200; ncols <- 10
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
rowRanges <- GRanges(rep(c("chr1", "chr2"), c(50, 150)),
IRanges(floor(runif(200, 1e5, 1e6)), width=100),
strand=sample(c("+", "-"), 200, TRUE))
colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 5),
row.names=LETTERS[1:10])
sset <- SummarizedExperiment(assays=SimpleList(counts=counts),
rowRanges=rowRanges, colData=colData)
s.list <- list(sset[,1:5], sset[,6:10])
time <- c(540, 527, 668, 587, 620, 540, 527, 668, 587, 620)
cens <- c(1, 0, 0, 1, 0, 1, 0, 0, 1, 0)
y.vars <- Surv(time, cens)
y.vars <- list(y.vars[1:5,],y.vars[1:5,])
simmodels <- simBootstrap(obj=s.list, y.vars=y.vars, 20, 100)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.