Description Usage Arguments Value Author(s) References Examples
the function to filter genes by Intergrative Correlation
1 | geneFilter(obj, cor.cutoff = 0.5)
|
obj |
a list of ExpressionSet, matrix or RangedSummarizedExperiment objects. If its elements are matrices, columns represent samples, rows represent genes |
cor.cutoff |
the cutoff threshold for filtering genes. Only when the integrative correlation between every pair of sets is larger than the cutoff value, will the gene be selected. |
returns a list of ExpressionSets matrix or RangedSummarizedExperiment
objects with genes filtered
Yuqing Zhang, Christoph Bernau, Levi Waldron
Garrett-Mayer, E., Parmigiani, G., Zhong, X., Cope, L.,
Gabrielson, E., Cross-study validation and combined analysis of gene
expression microarray data. Biostatistics. 2008 Apr;9(2):333-354.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | set.seed(8)
library(curatedOvarianData)
library(GenomicRanges)
data(GSE17260_eset)
data(E.MTAB.386_eset)
data(GSE14764_eset)
## to save time, we take a small subset from each dataset
esets.list <- list(GSE17260=GSE17260_eset[1:50, 1:10],
E.MTAB.386=E.MTAB.386_eset[1:50, 1:10],
GSE14764=GSE14764_eset[1:50, 1:10])
rm(E.MTAB.386_eset, GSE14764_eset, GSE17260_eset)
result.set <- geneFilter(esets.list, 0.1)
dim(result.set[[1]])
## as we cannot calculate correlation with one set, this function just
## delivers the same set if esets has length 1
result.oneset <- geneFilter(esets.list[1])
dim(result.oneset[[1]])
## Support matrices
X.list <- lapply(esets.list, function(eset){
return(exprs(eset)) ## Columns represent samples!
})
result.set <- geneFilter(X.list, 0.1)
dim(result.set[[1]])
## Support RangedSummarizedExperiment
nrows <- 200; ncols <- 6
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
rowRanges <- GRanges(rep(c("chr1", "chr2"), c(50, 150)),
IRanges(floor(runif(200, 1e5, 1e6)), width=100),
strand=sample(c("+", "-"), 200, TRUE))
colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 3),
row.names=LETTERS[1:6])
sset <- SummarizedExperiment(assays=SimpleList(counts=counts),
rowRanges=rowRanges, colData=colData)
s.list <- list(sset, sset)
result.set <- geneFilter(s.list, 0.9)
## the same set should resemble each other, no genes filtered
dim(assay(result.set[[1]]))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.