Description Usage Arguments Value Author(s) Examples
simTime is a function to perform the parametric-bootstrap step, where we use the true coefficients
and cumulative hazard to simulate survival and censoring.
1 | simTime(simmodels, original.yvars, result)
|
simmodels |
a list in the form of the return value of simData() which consists of three lists: obj: a list of ExpressionSets, matrices or RangedSummarizedExperiments setsID: a list of set labels indicating which original set the simulated one is from indices: a list of patient labels to tell which patient in the original set is drawn |
original.yvars |
response variable in the order of original sets(without sampling) |
result |
a list in the form of return of getTrueModel() which consists of five lists: Beta: a list of coefficients obtained by grid: timeline grid corresponding to hazard estimations censH and survH survH: cumulative hazard for survival times distribution censH: cumulative hazard for censoring times distribution lp: true linear predictors |
survival time is saved in phenodata, here the function still returns the ExpressionSets
Yuqing Zhang, Christoph Bernau, Levi Waldron
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | library(curatedOvarianData)
data(E.MTAB.386_eset)
data(GSE14764_eset)
esets.list <- list(E.MTAB.386=E.MTAB.386_eset[1:100, 1:20], GSE14764=GSE14764_eset[1:100, 1:20])
rm(E.MTAB.386_eset, GSE14764_eset)
## simulate on multiple ExpressionSets
set.seed(8)
y.list <- lapply(esets.list, function(eset){
time <- eset$days_to_death
cens.chr <- eset$vital_status
cens <- rep(0, length(cens.chr))
cens[cens.chr=="living"] <- 1
return(Surv(time, cens))
})
# To perform both parametric and non-parametric bootstrap, you can call simBootstrap()
# or, you can divide the steps into:
res <- getTrueModel(esets.list, y.list, 100)
simmodels <- simData(obj=esets.list, y.vars=y.list, n.samples=10)
# Then, use this function
simmodels <- simTime(simmodels=simmodels, original.yvars=y.list, result=res)
# it also supports performing only the parametrc bootstrap step on a list of expressionsets
# but you need to construct the parameter by scratch
res <- getTrueModel(esets.list, y.list, 100)
setsID <- seq_along(esets.list)
indices <- list()
for(i in setsID){
indices[[i]] <- seq_along(sampleNames(esets.list[[i]]))
}
simmodels <- list(obj=esets.list, y.vars=y.list, indices=indices, setsID=setsID)
new.simmodels <- simTime(simmodels=simmodels, original.yvars=y.list, result=res)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.