Description Usage Arguments Details Value References Examples
The generalised logarithm (glog) transformation applies a log transformation while applying an offset to account for technical variation.
1 | glog_transform(qc_label = "QC", factor_name, lambda = NULL, ...)
|
qc_label |
(character) The label used to identify QC samples. The default is |
factor_name |
(character) The name of a sample-meta column to use. |
lambda |
(numeric, NULL) The value of lambda to use. If NULL then the pmp package will be used to determine an "optimal" value for lambda. The default is |
... |
Additional slots and values passed to |
This object makes use of functionality from the following packages:
pmp
A glog_transform
object.
Jankevics A, Weber RJM (2020). pmp: Peak Matrix Processing and signal batch correction for metabolomics datasets. R package version 1.1.0.
Durbin B, Hardin J, Hawkins D, Rocke D (2002). “A variance-stabilizing transformation for gene-expression microarray data.” Bioinformatics, 18(Suppl 1), S105-S110.
Parsons HM, Ludwig C, Gunther UL, Viant MR (2007). “Improved classification accuracy in 1- and ', '2-dimensional NMR metabolomics data using the variance ', 'stabilising generalised logarithm transformation.” Bioinformatics, 8(1), 234.
1 2 3 | D = iris_DatasetExperiment()
M = glog_transform(qc_label='versicolor',factor_name='Species')
M = model_apply(M,D)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.