Description Usage Arguments Value Examples
View source: R/fisher_exact_class.R
A fisher exact test is used to analyse contingency tables by comparing the number of correctly/incorrectly predicted group labels. A multiple test corrected p-value indicates whether the number of measured values is significantly different between groups.
1 | fisher_exact(alpha = 0.05, mtc = "fdr", factor_name, factor_pred, ...)
|
alpha |
(numeric) The p-value cutoff for determining significance. The default is |
mtc |
(character) Multiple test correction method. Allowed values are limited to the following:
The default is |
factor_name |
(character) The name of a sample-meta column to use. |
factor_pred |
(data.frame) A data.frame, where each column is a factor of predicted group labels to compare with the true groups labels. |
... |
Additional slots and values passed to |
A fisher_exact
object.
1 2 3 4 5 6 7 8 9 10 11 | # load some data
D=MTBLS79_DatasetExperiment()
# prepare predictions based on NA
pred=as.data.frame(is.na(D$data))
pred=lapply(pred,factor,levels=c(TRUE,FALSE))
pred=as.data.frame(pred)
# apply method
M = fisher_exact(alpha=0.05,mtc='fdr',factor_name='class',factor_pred=pred)
M=model_apply(M,D)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.