sTrainBatch: Function to implement training via batch algorithm

Description Usage Arguments Value Note See Also Examples

View source: R/sTrainBatch.r

Description

sTrainBatch is supposed to perform batch training algorithm. It requires three inputs: a "sMap" or "sInit" object, input data, and a "sTrain" object specifying training environment. The training is implemented iteratively, but instead of choosing a single input vector, the whole input matrix is used. In each training cycle, the whole input matrix first land in the map through identifying the corresponding winner hexagon/rectangle (BMH), and then the codebook matrix is updated via updating formula (see "Note" below for details). It returns an object of class "sMap".

Usage

1
sTrainBatch(sMap, data, sTrain, verbose = TRUE)

Arguments

sMap

an object of class "sMap" or "sInit"

data

a data frame or matrix of input data

sTrain

an object of class "sTrain"

verbose

logical to indicate whether the messages will be displayed in the screen. By default, it sets to TRUE for display

Value

an object of class "sMap", a list with following components:

Note

Updating formula is: m_i(t+1) = \frac{∑_{j=1}^{dlen}h_{wi}(t)x_j}{∑_{j=1}^{dlen}h_{wi}(t)}, where

See Also

sTrainology, visKernels

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
# 1) generate an iid normal random matrix of 100x10 
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)

# 2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50, 
# but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")

# 3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")

# 4) define trainology at "rough" stage
sT_rough <- sTrainology(sMap=sI, data=data, stage="rough")

# 5) training at "rough" stage
sM_rough <- sTrainBatch(sMap=sI, data=data, sTrain=sT_rough)

# 6) define trainology at "finetune" stage
sT_finetune <- sTrainology(sMap=sI, data=data, stage="finetune")

# 7) training at "finetune" stage
sM_finetune <- sTrainBatch(sMap=sM_rough, data=data, sTrain=sT_rough)

supraHex documentation built on May 31, 2017, 10:53 a.m.