Description Usage Arguments Value Note See Also Examples

`sDmat`

is supposed to calculate distance (measured in
high-dimensional input space) to neighbors (defined by based on 2D
output space) for each of hexagons/rectangles

1 2 |

`sMap` |
an object of class "sMap" |

`which_neigh` |
which neighbors in 2D output space are used for the calculation. By default, it sets to "1" for direct neighbors, and "2" for neighbors within neighbors no more than 2, and so on |

`distMeasure` |
distance measure used to calculate distances in high-dimensional input space |

`dMat`

: a vector with the length of nHex. It stores the distance a hexaon/rectangle is away from its output-space-defined neighbors in high-dimensional input space

"which_neigh" is defined in output 2D space, but "distMeasure" is defined in high-dimensional input space

1 2 3 4 5 6 7 8 9 10 11 | ```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) get trained using by default setup
sMap <- sPipeline(data=data)
# 3) calculate "median" distances in INPUT space to different neighbors in 2D OUTPUT space
# 3a) using direct neighbors in 2D OUTPUT space
dMat <- sDmat(sMap=sMap, which_neigh=1, distMeasure="median")
# 3b) using no more than 2-topological neighbors in 2D OUTPUT space
# dMat <- sDmat(sMap=sMap, which_neigh=2, distMeasure="median")
``` |

supraHex documentation built on May 2, 2018, 3:14 a.m.

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.