Description Usage Arguments Value Examples
This function does simple linear algebra to calculate f-statistics for each row of a data matrix comparing the nested models defined by the design matrices for the alternative (mod) and and null (mod0) cases. The columns of mod0 must be a subset of the columns of mod.
1 | f.pvalue(dat, mod, mod0)
|
dat |
The transformed data matrix with the variables in rows and samples in columns |
mod |
The model matrix being used to fit the data |
mod0 |
The null model being compared when fitting the data |
p A vector of F-statistic p-values one for each row of dat.
1 2 3 4 5 6 7 8 9 10 11 | library(bladderbatch)
data(bladderdata)
dat <- bladderEset[1:50,]
pheno = pData(dat)
edata = exprs(dat)
mod = model.matrix(~as.factor(cancer), data=pheno)
mod0 = model.matrix(~1,data=pheno)
pValues = f.pvalue(edata,mod,mod0)
qValues = p.adjust(pValues,method="BH")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.