R/f.pvalue.R

Defines functions f.pvalue

Documented in f.pvalue

#' A function for quickly calculating f statistic p-values for use in sva
#' 
#' This function does simple linear algebra to calculate f-statistics
#' for each row of a data matrix comparing the nested models
#' defined by the design matrices for the alternative (mod) and and null (mod0) cases.
#' The columns of mod0 must be a subset of the columns of mod.  
#' 
#' @param dat The transformed data matrix with the variables in rows and samples in columns
#' @param mod The model matrix being used to fit the data
#' @param mod0 The null model being compared when fitting the data
#' 
#' @return p A vector of F-statistic p-values one for each row of dat. 
#' 
#' @examples 
#' library(bladderbatch)
#' data(bladderdata)
#' dat <- bladderEset[1:50,]
#' 
#' pheno = pData(dat)
#' edata = exprs(dat)
#' mod = model.matrix(~as.factor(cancer), data=pheno)
#' mod0 = model.matrix(~1,data=pheno)
#' 
#' pValues = f.pvalue(edata,mod,mod0)
#' qValues = p.adjust(pValues,method="BH")
#' 
#' @export
#' 

f.pvalue <- function(dat,mod,mod0){
  n <- dim(dat)[2]
  m <- dim(dat)[1]
  df1 <- dim(mod)[2]
  df0 <- dim(mod0)[2]
  p <- rep(0,m)
  Id <- diag(n)
  
  resid <- dat %*% (Id - mod %*% solve(t(mod) %*% mod) %*% t(mod))
  rss1 <- rowSums(resid*resid)
  rm(resid)
  
  resid0 <- dat %*% (Id - mod0 %*% solve(t(mod0) %*% mod0) %*% t(mod0))
  rss0 <- rowSums(resid0*resid0)
  rm(resid0)
  
  fstats <- ((rss0 - rss1)/(df1-df0))/(rss1/(n-df1))
  p <-  1-pf(fstats,df1=(df1-df0),df2=(n-df1))
  return(p)
}

Try the sva package in your browser

Any scripts or data that you put into this service are public.

sva documentation built on Nov. 8, 2020, 8:16 p.m.