Description Usage Arguments Value Author(s) See Also Examples
This function summarizes the topology of the ternary network using marginal edge probabilities.
1 | graphPosterior(tpost)
|
tpost |
a ternaryPost object |
The function returns a matrix of marginal posterior probabilities of each possible network edge – rows are children and columns are parents. The first column represents no parents.
Matthew N. McCall and Anthony Almudevar
Almudevar A, McCall MN, McMurray H, Land H (2011). Fitting Boolean Networks from Steady State Perturbation Data, Statistical Applications in Genetics and Molecular Biology, 10(1): Article 47.
1 2 3 4 5 6 | ssObj <- matrix(c(1,1,1,0,1,1,0,0,1),nrow=3)
pObj <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3)
rownames(ssObj) <- rownames(pObj) <- colnames(ssObj) <- colnames(pObj) <- c("Gene1","Gene2","Gene3")
tnfitObj <- tnetfit(ssObj, pObj)
tnpostObj <- tnetpost(tnfitObj, mdelta=10, msample=10)
graphPosterior(tnpostObj)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.