tnetfit: Ternary Network Fitting

Description Usage Arguments Value Author(s) See Also Examples

View source: R/tnetfit.R

Description

This function fits a ternary network based on perturbation experiments.

Usage

1
2

Arguments

steadyStateObj

a matrix of steady gene expression observations from a perturbation experiment. Rows are genes and columns are experiments.

perturbationObj

a matrix of perturbation experiments. Rows are genes and columns are experiments.

params

a ternaryFitParameters object

xSeed

an integer random seed. If NA, a random seed is generated.

Value

The function returns a ternaryFit object.

Author(s)

Matthew N. McCall and Anthony Almudevar

See Also

Almudevar A, McCall MN, McMurray H, Land H (2011). Fitting Boolean Networks from Steady State Perturbation Data, Statistical Applications in Genetics and Molecular Biology, 10(1): Article 47.

Examples

1
2
3
4
ssObj <- matrix(c(1,1,1,0,1,1,0,0,1),nrow=3)
pObj <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3)
rownames(ssObj) <- rownames(pObj) <- colnames(ssObj) <- colnames(pObj) <- c("Gene1","Gene2","Gene3")
tnfitObj <- tnetfit(ssObj, pObj)

ternarynet documentation built on Nov. 8, 2020, 7 p.m.