Description Usage Arguments Value Author(s) References See Also Examples
Computes the genotypic TDT for a SNP or for each column of a matrix representing a SNP.
1 2 3 4 5 6 7 8 9 10 |
snp |
a numeric vector of length 3 * t representing a SNP genotyped at t trios. Each of the t
blocks (i.e. |
mat.snp |
a numeric matrix in which each column represents a SNP. Each of the SNPs must have the same structure
as |
model |
type of model that should be fitted. Abbreviations are allowed. Thus, e.g., |
size |
the number of SNPs considered simultaneously when computing the parameter estimates. Ignored if |
x |
an object of class |
digits |
number of digits that should be printed. |
top |
number of interactions that should be printed. If |
... |
ignored. |
An object of class tdt
or colTDT
consisting of the following numeric values or vectors, respectively:
coef |
the estimated parameter, |
se |
the estimated standard deviation of the parameter estimate, |
stat |
Wald statistic, |
RR |
the relative risk, i.e.\ for trio data, |
lowerRR |
the lower bound of the 95% confidence interval for |
upperRR |
the upper bound of the 95% confidence interval for |
usedTrios |
the number of trios affecting the parameter estimation (only for |
... |
further internal parameters |
Holger Schwender, holger.schwender@udo.edu
Schaid, D.J. (1996). General Score Tests for Associations of Genetic Markers with Disease Using Cases and Their Parents. Genetic Epidemiology, 13, 423-449.
Schwender, H., Taub, M.A., Beaty, T.H., Marazita, M.L., and Ruczinski, I. (2011). Rapid Testing of SNPs and Gene-Environment Interactions in Case-Parent Trio Data Based on Exact Analytic Parameter Estimation. Biometrics, 68, 766-773.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | # Load the simulated data.
data(trio.data)
# One particular SNP (e.g., the one in the first
# column of mat.test) can be tested by
tdt.out <- tdt(mat.test[,1])
# All SNPs in mat.test can be tested by
tdt.out2 <- colTDT(mat.test)
# By default, an additive mode of inheritance is considered.
# If another mode, e.g., the dominant mode, should be
# considered, then this can be done by
tdt.out3 <- colTDT(mat.test, model = "dominant")
# By default, statistics for the top 5 SNPs are displayed.
# If another number of SNPs, say 10, should be displayed,
# then this can be done by
print(tdt.out2, top = 10)
# The statistics for all SNPs (not ordered by their
# significance) can be obtained by
print(tdt.out2, top = 0)
|
Genotypic TDT Based on 3 Pseudo Controls
Model Type: Additive
Coef RR Lower Upper SE Statistic p-Value Trios
SNP1 -0.04256 0.9583 0.6396 1.436 0.2063 0.04255 0.83658 72
SNP2 -0.19671 0.8214 0.5561 1.213 0.1990 0.97724 0.32288 73
SNP3 -0.22884 0.7955 0.5103 1.240 0.2265 1.02085 0.31232 66
SNP4 -0.13353 0.8750 0.5783 1.324 0.2113 0.39941 0.52740 71
SNP5 0.09764 1.1026 0.7148 1.701 0.2211 0.19497 0.65881 64
SNP6 0.44895 1.5667 0.9910 2.477 0.2337 3.69084 0.05471 63
Genotypic TDT Based on 3 Pseudo Controls
Model Type: Additive
Coef RR Lower Upper SE Statistic p-Value Trios
SNP1 -0.04256 0.9583 0.6396 1.436 0.2063 0.04255 0.83658 72
SNP2 -0.19671 0.8214 0.5561 1.213 0.1990 0.97724 0.32288 73
SNP3 -0.22884 0.7955 0.5103 1.240 0.2265 1.02085 0.31232 66
SNP4 -0.13353 0.8750 0.5783 1.324 0.2113 0.39941 0.52740 71
SNP5 0.09764 1.1026 0.7148 1.701 0.2211 0.19497 0.65881 64
SNP6 0.44895 1.5667 0.9910 2.477 0.2337 3.69084 0.05471 63
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.