Nothing
coef.acdFit <- function(object, returnCoef = "all", ...){
returnCoef <- match.arg(returnCoef, c("all", "distribution", "model"))
switch(returnCoef,
all = c(object$mPara, object$dPara),
distribution = object$dPara,
model = object$mPara)
}
residuals.acdFit <- function(object, ...){
object$residuals
}
predict.acdFit <- function(object, N = 10, ...){
k <- max(object$order)
endMu = utils::tail(object$muHats, k) #the end of the estimated expected durations of the fitted model
if(length(object$durations$adjDur) != 0)
endDurations <- utils::tail(object$durations$adjDur, k) #the end of the durations of the fitted model
else #no 'adjDur' column
endDurations <- utils::tail(object$durations$durations, k) #the end of the durations of the fitted model
errorExpectation <- 1
#if the fitted model didn't have a forced error expectation = 1, the mean of the residuals is instead used:
if(object$forceErrExpec == FALSE) errorExpectation <- mean(object$residuals)
#"simulates" with error terms equal to their expectation, starting from the endpoints of the original data set
sim_ACD(N = N, param = stats::coef(object), Nburn = length(endDurations), startX = endDurations,
startMu = endMu, errors = errorExpectation)
}
print.acdFit <- function(x, ...){
if(x$distribution == "exponential") {
cat("\nACD model estimation by (Quasi) Maximum Likelihood \n")
} else {
cat("\nACD model estimation by Maximum Likelihood \n")
}
cat("\nCall:\n")
cat(" ", deparse(x$call), "\n")
cat("\nModel:\n")
cat(" ", x$model)
cat("(")
cat(x$order[1])
for(i in 2:length(x$order)) cat("", x$order[i], sep = ", ")
cat(")")
if(length(x$SNIACDbp) != 0) cat("\n Break points:", x$SNIACDbp)
cat("\n")
cat("\nDistribution:\n")
cat(" ", x$distribution)
cat("\n\nN:", x$N)
cat("\n\nParameter estimate:\n")
print(format(x$parameterInference, digits = 3, scientific = F))
if(length(x$comments) > 0){
cat("\nNote:", x$comments)
}
if(length(x$forcedDistPara) > 0){
cat("\n\nThe fixed/unfree mean distribution parameter: \n")
cat(" ", names(x$forcedDistPara), ": ", x$forcedDistPara, sep = "")
}
if(length(x$bootErr) != 0){
cat("\n\nBootstrap correlations:\n")
print(format(data.frame(x$bootCorr), digits = 3, scientific = F))
}
if(length(x$robustCorr) != 0){
cat("\n\nQML robust correlations:\n")
print(format(data.frame(x$robustCorr), digits = 3, scientific = F))
}
cat("\n\nGoodness of fit:\n")
print.data.frame(x$goodnessOfFit)
cat("\nConvergence:", x$convergence, "\n")
cat("\nNumber of log-likelihood function evaluations:", x$evals, "\n")
if(length(x$bootErr) == 0) cat("\nEstimation time:", round(x$estimationTime, digits = 4), attributes(x$estimationTime)$units, "\n")
else cat("\nTotal estimation time (including bootstrap simulations):", round(x$estimationTime, digits = 4), attributes(x$estimationTime)$units, "\n")
cat("\nDescription:", x$description)
cat("\n\n")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.