Description Usage Arguments Details Value Author(s) References See Also Examples
AFcoxph
estimates the model-based adjusted attributable fraction function from a Cox Proportional Hazard regression model in form of a coxph
object. This model is commonly used for data from cohort sampling designs with time-to-event outcomes.
1 |
object |
a fitted Cox Proportional Hazard regression model object of class " |
data |
an optional data frame, list or environment (or object coercible by |
exposure |
the name of the exposure variable as a string. The exposure must be binary (0/1) where unexposed is coded as 0. |
times |
a scalar or vector of time points specified by the user for which the attributable fraction function is estimated. If not specified the observed event times will be used. |
clusterid |
the name of the cluster identifier variable as a string, if data are clustered. Cluster robust standard errors will be calculated. |
AFcoxph
estimates the attributable fraction for a time-to-event outcome
under the hypothetical scenario where a binary exposure X
is eliminated from the population. The estimate is adjusted for confounders Z
by the Cox proportional hazards model (coxph
). Let the AF function be defined as
AF = 1 - {1 - S0(t)} / {1 - S(t)}
where S0(t) denotes the counterfactual survival function for the event if
the exposure would have been eliminated from the population at baseline and S(t) denotes the factual survival function.
If Z
is sufficient for confounding control, then S0(t) can be expressed as E_z{S(t|X=0,Z)}.
The function uses a fitted Cox proportional hazards regression to estimate S(t|X=0,Z), and the marginal sample distribution of Z
to approximate the outer expectation (Sj<c3><b6>lander and Vansteelandt, 2014). If clusterid
is supplied, then a clustered sandwich formula is used in all variance calculations.
AF.est |
estimated attributable fraction function for every time point specified by |
AF.var |
estimated variance of |
S.est |
estimated factual survival function; S(t). |
S.var |
estimated variance of |
S0.est |
estimated counterfactual survival function if exposure would be eliminated; S0(t). |
S0.var |
estimated variance of |
Elisabeth Dahlqwist, Arvid Sj<c3><b6>lander
Chen, L., Lin, D. Y., and Zeng, D. (2010). Attributable fraction functions for censored event times. Biometrika 97, 713-726.
Sj<c3><b6>lander, A. and Vansteelandt, S. (2014). Doubly robust estimation of attributable fractions in survival analysis. Statistical Methods in Medical Research. doi: 10.1177/0962280214564003.
coxph
and Surv
used for fitting the Cox proportional hazards model.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | # Simulate a sample from a cohort sampling design with time-to-event outcome
expit <- function(x) 1 / (1 + exp( - x))
n <- 500
time <- c(seq(from = 0.2, to = 1, by = 0.2))
Z <- rnorm(n = n)
X <- rbinom(n = n, size = 1, prob = expit(Z))
Tim <- rexp(n = n, rate = exp(X + Z))
C <- rexp(n = n, rate = exp(X + Z))
Tobs <- pmin(Tim, C)
D <- as.numeric(Tobs < C)
#Ties created by rounding
Tobs <- round(Tobs, digits = 2)
# Example 1: non clustered data from a cohort sampling design with time-to-event outcomes
data <- data.frame(Tobs, D, X, Z)
# Fit a Cox PH regression model
fit <- coxph(formula = Surv(Tobs, D) ~ X + Z + X * Z, data = data, ties="breslow")
# Estimate the attributable fraction from the fitted Cox PH regression model
AFcoxph_est <- AFcoxph(fit, data=data, exposure ="X", times = time)
summary(AFcoxph_est)
# Example 2: clustered data from a cohort sampling design with time-to-event outcomes
# Duplicate observations in order to create clustered data
id <- rep(1:n, 2)
data <- data.frame(Tobs = c(Tobs, Tobs), D = c(D, D), X = c(X, X), Z = c(Z, Z), id = id)
# Fit a Cox PH regression model
fit <- coxph(formula = Surv(Tobs, D) ~ X + Z + X * Z, data = data, ties="breslow")
# Estimate the attributable fraction from the fitted Cox PH regression model
AFcoxph_clust <- AFcoxph(object = fit, data = data,
exposure = "X", times = time, clusterid = "id")
summary(AFcoxph_clust)
plot(AFcoxph_clust, CI = TRUE)
# Estimate the attributable fraction from the fitted Cox PH regression model, time unspecified
AFcoxph_clust_no_time <- AFcoxph(object = fit, data = data,
exposure = "X", clusterid = "id")
summary(AFcoxph_clust_no_time)
plot(AFcoxph_clust, CI = TRUE)
|
Loading required package: survival
Loading required package: drgee
Loading required package: nleqslv
Loading required package: Rcpp
Loading required package: data.table
Loading required package: stdReg
Call:
coxph(formula = Surv(Tobs, D) ~ X + Z + X * Z, data = data, ties = "breslow")
Estimated attributable fraction (AF) and untransformed 95% Wald CI:
Time AF Std.Error z value Pr(>|z|) Lower limit Upper limit
0.2 0.4409712 0.06018887 7.326458 2.363157e-13 0.3230032 0.5589393
0.4 0.3428828 0.05302615 6.466296 1.004341e-10 0.2389535 0.4468122
0.6 0.2618869 0.04426686 5.916093 3.296785e-09 0.1751254 0.3486483
0.8 0.2186562 0.03899067 5.607911 2.047838e-08 0.1422359 0.2950765
1.0 0.1783950 0.03370551 5.292755 1.204872e-07 0.1123334 0.2444566
Exposure : X
Event : D
Observations Events
500 261
Method for confounder adjustment: Cox Proportional Hazards model
Formula: Surv(Tobs, D) ~ X + Z + X * Z
Call:
coxph(formula = Surv(Tobs, D) ~ X + Z + X * Z, data = data, ties = "breslow")
Estimated attributable fraction (AF) and untransformed 95% Wald CI:
Time AF Robust SE z value Pr(>|z|) Lower limit Upper limit
0.2 0.4409712 0.04271303 10.324045 5.486180e-25 0.3572552 0.5246872
0.4 0.3428828 0.03776328 9.079793 1.087816e-19 0.2688681 0.4168975
0.6 0.2618869 0.03165594 8.272914 1.307244e-16 0.1998424 0.3239314
0.8 0.2186562 0.02767679 7.900344 2.781337e-15 0.1644107 0.2729017
1.0 0.1783950 0.02373252 7.516903 5.608909e-14 0.1318802 0.2249099
Exposure : X
Event : D
Observations Events Clusters
1000 522 500
Method for confounder adjustment: Cox Proportional Hazards model
Formula: Surv(Tobs, D) ~ X + Z + X * Z
Call:
coxph(formula = Surv(Tobs, D) ~ X + Z + X * Z, data = data, ties = "breslow")
Estimated attributable fraction (AF) and untransformed 95% Wald CI:
Time AF Robust SE z value Pr(>|z|) Lower limit Upper limit
0.00 0.652157206 0.045285561 14.4009966 5.100275e-47 0.563399138 0.740915275
0.01 0.635259108 0.045825983 13.8624218 1.070023e-43 0.545441831 0.725076385
0.02 0.620947406 0.045925377 13.5207907 1.179017e-41 0.530935322 0.710959491
0.03 0.605498347 0.046074404 13.1417509 1.897838e-39 0.515194174 0.695802520
0.04 0.585710990 0.046272719 12.6578036 1.012939e-36 0.495018127 0.676403854
0.05 0.577288946 0.046230359 12.4872261 8.765686e-36 0.486679107 0.667898785
0.06 0.564027623 0.046020234 12.2560791 1.558607e-34 0.473829623 0.654225623
0.07 0.553050343 0.045801086 12.0750486 1.430797e-33 0.463281864 0.642818823
0.08 0.548134789 0.046067491 11.8985162 1.204701e-32 0.457844166 0.638425413
0.09 0.534463787 0.045698885 11.6953354 1.346542e-31 0.444895618 0.624031956
0.10 0.518838493 0.045116246 11.5000370 1.318590e-30 0.430412277 0.607264710
0.11 0.504070894 0.044448717 11.3405049 8.266613e-30 0.416953010 0.591188779
0.12 0.494633659 0.044275783 11.1716523 5.612694e-29 0.407854718 0.581412600
0.13 0.488862531 0.044338956 11.0255760 2.876709e-28 0.401959774 0.575765288
0.14 0.479065674 0.043830071 10.9300685 8.278594e-28 0.393160314 0.564971034
0.15 0.474810291 0.043723698 10.8593352 1.800552e-27 0.389113418 0.560507165
0.16 0.464042565 0.043353848 10.7036074 9.789142e-27 0.379070585 0.549014546
0.17 0.461763537 0.043243801 10.6781440 1.288214e-26 0.377007244 0.546519830
0.18 0.454879204 0.043124537 10.5480369 5.186948e-26 0.370356666 0.539401743
0.19 0.452547249 0.043041772 10.5141407 7.435555e-26 0.368186925 0.536907572
0.20 0.440971233 0.042713027 10.3240454 5.486180e-25 0.357255237 0.524687228
0.21 0.438590412 0.042679063 10.2764771 8.995574e-25 0.354940986 0.522239838
0.22 0.431305533 0.042505224 10.1471182 3.412926e-24 0.347996825 0.514614241
0.24 0.428721841 0.042414415 10.1079277 5.095055e-24 0.345591115 0.511852567
0.25 0.423458506 0.042187915 10.0374361 1.043511e-23 0.340771712 0.506145301
0.26 0.420735974 0.042088632 9.9964280 1.579935e-23 0.338243772 0.503228176
0.27 0.412351957 0.041697088 9.8892267 4.635949e-23 0.330627166 0.494076747
0.28 0.409479876 0.041558065 9.8531987 6.639655e-23 0.328027565 0.490932188
0.29 0.395403905 0.040807471 9.6894980 3.341671e-22 0.315422732 0.475385078
0.30 0.389715017 0.040550513 9.6106063 7.212302e-22 0.310237472 0.469192562
0.31 0.386751516 0.040451726 9.5608162 1.168317e-21 0.307467590 0.466035443
0.32 0.377830309 0.039943915 9.4590205 3.108414e-21 0.299541674 0.456118943
0.33 0.374804906 0.039809213 9.4150293 4.729506e-21 0.296780282 0.452829530
0.36 0.368707944 0.039670927 9.2941600 1.483731e-20 0.290954355 0.446461532
0.37 0.365539854 0.039427655 9.2711538 1.841430e-20 0.288263070 0.442816638
0.38 0.356246290 0.038870234 9.1650154 4.953992e-20 0.280062032 0.432430548
0.39 0.352886018 0.038630342 9.1349442 6.544050e-20 0.277171939 0.428600097
0.40 0.342882808 0.037763285 9.0797930 1.087816e-19 0.268868130 0.416897486
0.41 0.339410307 0.037512185 9.0480015 1.456088e-19 0.265887775 0.412932840
0.42 0.335877066 0.037251343 9.0165090 1.941785e-19 0.262865776 0.408888357
0.43 0.328871779 0.036539915 9.0003433 2.250130e-19 0.257254861 0.400488696
0.45 0.321460506 0.036217336 8.8758738 6.938650e-19 0.250475831 0.392445181
0.47 0.317714081 0.035965657 8.8338183 1.011620e-18 0.247222688 0.388205474
0.48 0.313986746 0.035719659 8.7903064 1.491526e-18 0.243977501 0.383995990
0.50 0.306360155 0.035154961 8.7145639 2.918800e-18 0.237457697 0.375262612
0.51 0.302543918 0.034937873 8.6594831 4.739084e-18 0.234066946 0.371020890
0.52 0.298689864 0.034602055 8.6321423 6.021342e-18 0.230871082 0.366508647
0.55 0.294616523 0.034279432 8.5945568 8.358676e-18 0.227430071 0.361802974
0.56 0.286434348 0.033871534 8.4564917 2.755418e-17 0.220047361 0.352821335
0.57 0.278090010 0.033145154 8.3900654 4.858717e-17 0.213126702 0.343053317
0.59 0.273951157 0.032823900 8.3460881 7.056120e-17 0.209617496 0.338284819
0.60 0.261886858 0.031655940 8.2729136 1.307244e-16 0.199842355 0.323931360
0.63 0.257921731 0.031451572 8.2005990 2.391921e-16 0.196277783 0.319565679
0.67 0.249941942 0.030721311 8.1357838 4.092818e-16 0.189729279 0.310154605
0.68 0.245978585 0.030397520 8.0920610 5.866353e-16 0.186400541 0.305556629
0.69 0.241959775 0.030051591 8.0514797 8.179897e-16 0.183059739 0.300859811
0.70 0.237985910 0.029721573 8.0071774 1.173711e-15 0.179732697 0.296239123
0.71 0.234063537 0.029311707 7.9853262 1.401512e-15 0.176613648 0.291513426
0.74 0.230203573 0.028905433 7.9640243 1.665326e-15 0.173549965 0.286857181
0.75 0.226402604 0.028488726 7.9470948 1.909362e-15 0.170565728 0.282239480
0.77 0.222591137 0.028120378 7.9156523 2.459601e-15 0.167476208 0.277706065
0.79 0.218656212 0.027676795 7.9003445 2.781337e-15 0.164410691 0.272901732
0.81 0.210897995 0.027171804 7.7616486 8.383244e-15 0.157642237 0.264153752
0.87 0.206827251 0.026708935 7.7437476 9.652857e-15 0.154478700 0.259175802
0.92 0.202786029 0.026249048 7.7254622 1.114482e-14 0.151338840 0.254233218
0.95 0.194595702 0.025239404 7.7099960 1.258217e-14 0.145127379 0.244064024
0.98 0.186406156 0.024237947 7.6906744 1.463614e-14 0.138900654 0.233911659
0.99 0.178395035 0.023732519 7.5169028 5.608909e-14 0.131880154 0.224909917
1.03 0.173809423 0.023200554 7.4916065 6.803566e-14 0.128337172 0.219281674
1.10 0.168974262 0.022683515 7.4492098 9.390092e-14 0.124515390 0.213433134
1.12 0.164086861 0.022144873 7.4096996 1.265858e-13 0.120683706 0.207490015
1.17 0.159204782 0.021599211 7.3708610 1.695295e-13 0.116871106 0.201538457
1.20 0.154259432 0.020942202 7.3659605 1.758759e-13 0.113213470 0.195305393
1.23 0.149271422 0.020338447 7.3393717 2.145988e-13 0.109408799 0.189134046
1.40 0.143849743 0.019923888 7.2199634 5.200156e-13 0.104799640 0.182899847
1.41 0.138468760 0.019306198 7.1722440 7.377828e-13 0.100629308 0.176308212
1.43 0.128222559 0.018238808 7.0302051 2.062302e-12 0.092475153 0.163969966
1.49 0.123068051 0.017479470 7.0407199 1.912491e-12 0.088808920 0.157327182
1.54 0.117867918 0.016913146 6.9690123 3.191739e-12 0.084718762 0.151017074
1.60 0.112884850 0.016374208 6.8940646 5.422038e-12 0.080791992 0.144977709
1.65 0.108070951 0.015763083 6.8559526 7.083886e-12 0.077175876 0.138966026
1.68 0.103320698 0.015136551 6.8259075 8.737120e-12 0.073653603 0.132987792
1.71 0.098573858 0.015000839 6.5712228 4.990373e-11 0.069172753 0.127974963
1.76 0.093329705 0.014355403 6.5013643 7.959480e-11 0.065193632 0.121465778
1.88 0.088016625 0.013769561 6.3921154 1.636063e-10 0.061028781 0.115004469
1.95 0.082938491 0.013290468 6.2404490 4.363165e-10 0.056889651 0.108987330
2.01 0.078062003 0.012606159 6.1923701 5.926619e-10 0.053354385 0.102769620
2.08 0.073215417 0.011975720 6.1136546 9.737494e-10 0.049743437 0.096687398
2.24 0.068653174 0.011304416 6.0731289 1.254417e-09 0.046496926 0.090809422
2.31 0.064148808 0.010896701 5.8869936 3.932840e-09 0.042791667 0.085505949
2.40 0.059117915 0.010323564 5.7265023 1.025224e-08 0.038884101 0.079351730
3.14 0.052905279 0.009833530 5.3800905 7.444842e-08 0.033631915 0.072178642
3.36 0.046004683 0.009360985 4.9145129 8.900348e-07 0.027657489 0.064351877
3.51 0.039719299 0.008604858 4.6159156 3.913660e-06 0.022854087 0.056584511
3.60 0.032511181 0.008149272 3.9894586 6.622428e-05 0.016538903 0.048483460
3.67 0.026091696 0.007443104 3.5054858 4.557747e-04 0.011503480 0.040679912
4.09 0.018158064 0.006533484 2.7792313 5.448772e-03 0.005352670 0.030963458
9.64 0.006417307 0.004784925 1.3411510 1.798714e-01 -0.002960974 0.015795588
12.31 0.001278750 0.001436247 0.8903407 3.732830e-01 -0.001536244 0.004093743
Exposure : X
Event : D
Observations Events Clusters
1000 522 500
Method for confounder adjustment: Cox Proportional Hazards model
Formula: Surv(Tobs, D) ~ X + Z + X * Z
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.