Nothing
context("ANOFA:: Testing contrastFrequencies function")
# expect_output( str(res), "data.frame")
# expect_equal( "ggplot" %in% class(plt), TRUE)
# expect_message( p <- superbPlot(dta2a, etc ))
# expect_error(), expect_warning(), expect_condition( , class = "")
test_that("TESTS of contrastFrequencies function(1/2)", {
w <- anofa(Frequency ~ Intensity * Pitch, minimalExample)
c <- contrastFrequencies(w,
list(c1=c(1,-1,0,0,0,0)/1,
c2=c(1,1,-2,0,0,0)/2,
c3=c(1,1,1,-3,0,0)/3,
c4=c(1,1,1,1,-4,0)/4,
c5=c(1,1,1,1,1,-5)/5
)
)
expect_equal(sum(c$results[,1]), w$results[1,1], tolerance = 0.0001)
e <- emFrequencies(w, ~ Intensity | Pitch)
f <- contrastFrequencies(e, list(c1=c(1,1,-2)/2, c2=c(1,-1,0)))
expect_equal(sum(f$results[,1]), w$results[1,1], tolerance = 0.0001)
# not an anofa object (error 31)
expect_error( contrastFrequencies(22, list(c1=c(1,1,-2)/1, c2=c(1,-1,0))) )
# contrast unequal length (error 32)
expect_error( contrastFrequencies(w, list(c1=c(1,1,-2)/1, c2=c(1,-1))) )
# contrast length does not match design (error 33)
expect_error( contrastFrequencies(w, list(c1=c(1,-1)/1, c2=c(1,-1))) )
# too many contrasts (error 34)
expect_error( contrastFrequencies(e, list(c1=c(1,1,-2)/1, c2=c(1,-1,0), c3=c(0,1,01))) )
# cross product does not sum to 1 (error 35)
expect_error( contrastFrequencies(e, list(c1=c(1,1,-2)/2, c2=c(1,0,-1))) )
# amplitude not 1 (error 36)
expect_error( contrastFrequencies(e, list(c1=c(1,1,-2)/1, c2=c(1,-1,0))) )
})
test_that("TESTS of contrastFrequencies function (2/2)", {
##########################################################
# Testing the dataset's example
##########################################################
#### LANDIS ET AL., 2013 ####
L <- anofa( obsfreq ~ provider * program, LandisBarrettGalvin2013)
c <- contrastFrequencies(L, list(
c1=c(1,-01,0,0,0,0,0,0,0,0,0,0,0,0,0)/1,
c2=c(1,1,-02,0,0,0,0,0,0,0,0,0,0,0,0)/2,
c3=c(1,1,1,-03,0,0,0,0,0,0,0,0,0,0,0)/3,
c4=c(1,1,1,1,-04,0,0,0,0,0,0,0,0,0,0)/4,
c5=c(1,1,1,1,1,-05,0,0,0,0,0,0,0,0,0)/5,
c6=c(1,1,1,1,1,1,-06,0,0,0,0,0,0,0,0)/6,
c7=c(1,1,1,1,1,1,1,-07,0,0,0,0,0,0,0)/7,
c8=c(1,1,1,1,1,1,1,1,-08,0,0,0,0,0,0)/8,
c9=c(1,1,1,1,1,1,1,1,1,-09,0,0,0,0,0)/9,
cA=c(1,1,1,1,1,1,1,1,1,1,-10,0,0,0,0)/10,
cB=c(1,1,1,1,1,1,1,1,1,1,1,-11,0,0,0)/11,
cC=c(1,1,1,1,1,1,1,1,1,1,1,1,-12,0,0)/12,
cD=c(1,1,1,1,1,1,1,1,1,1,1,1,1,-13,0)/13,
cE=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,-14)/14
))
expect_equal(sum(c$results[,1]), L$results[1,1], tolerance = 0.0001)
e <- emFrequencies(L, ~ program | provider)
f <- contrastFrequencies(e, list(
"(PBH & CBH) vs. BM"=c(1,1,-2)/2,
"PBH vs. CBH"=c(1,-1,0))
)
expect_equal(f$results[1,1], 18.6215, tolerance = 0.0001)
expect_equal(sum(f$results[,1]) + L$results[2,1], L$results[1,1], tolerance = 0.0001)
#### LIGHT & MARGOLIN, 1971 ####
L <- anofa( obsfreq ~ vocation * gender, LightMargolin1971)
c <- contrastFrequencies(L, list(
c1=c(1,-01,0,0,0,0,0,0,0,0)/1,
c2=c(1,1,-02,0,0,0,0,0,0,0)/2,
c3=c(1,1,1,-03,0,0,0,0,0,0)/3,
c4=c(1,1,1,1,-04,0,0,0,0,0)/4,
c5=c(1,1,1,1,1,-05,0,0,0,0)/5,
c6=c(1,1,1,1,1,1,-06,0,0,0)/6,
c7=c(1,1,1,1,1,1,1,-07,0,0)/7,
c8=c(1,1,1,1,1,1,1,1,-08,0)/8,
c9=c(1,1,1,1,1,1,1,1,1,-09)/9
))
expect_equal(sum(c$results[,1]), L$results[1,1], tolerance = 0.0001)
e <- emFrequencies(L, ~ vocation | gender )
f <- contrastFrequencies(e, list(
"teacher college vs. gymnasium"=c( 0, 0, 1,-1, 0),
"vocational vs. university" = c( 0, 1, 0, 0,-1),
"another" = c( 0, 1,-1,-1,+1)/2,
"to exhaust the df" = c( 4,-1,-1,-1,-1)/4
)
)
expect_equal(f$results[1,1], 0.8325, tolerance = 0.0001)
expect_equal(sum(f$results[,1]) + L$results[3,1], L$results[1,1], tolerance = 0.0001)
#### Les greffons GILLET, 1993 ####
G <- anofa( Freq ~ species * location * florished, Gillet1993)
e <- emFrequencies(G, ~ location | species * florished)
f <- contrastFrequencies(e, list(
"order 1 vs. 2&3" = c( 2,-1,-1)/2,
"order 2 vs order 3" = c( 0, 1,-1)
)
)
expect_equal(f$results[1,1], 91.7686, tolerance = 0.0001)
expect_equal(sum(f$results[,1])+G$results[4,1]+G$results[2,1]+G$results[6,1], G$results[1,1], tolerance = 0.0001)
#### Detergent RIES ET SMITH, 1963 ####
# Removed because Prof Ripley is not happy
# dta <- data.frame(Detergent)
# R <- anofa( Freq ~ Temperature * M_User * Preference * Water_softness, dta)
# e <- emFrequencies(R, ~ Water_softness | Temperature )
# f <- contrastFrequencies(e, list(
# "soft vs. medium" = c( 1,-1, 0),
# "both vs. hard" = c( 1, 1,-2)/2
# )
# )
# expect_equal(sum(f$results[,1]), sum(e$results[,1]), tolerance = 0.0001)
# expect_equal(sum(f$results[,1]), sum(R$results[c(5,8),1]), tolerance = 0.0001)
})
test_that("TESTS of contrastFrequencies function (3/3)", {
##########################################################
# Testing contrasts with random frequencies
##########################################################
# ==============================================================
# testing (2x3) design
set.seed(42)
dta <- GRF( list(A=c("a1","a2"), B=c("b1","b2","b3") ), 100,
c(rep(1/10,5),1/2) ) ## results in an interaction A:B
w <- anofa( Freq ~ A * B, dta)
# decomposition of B for each level of A
e <- emFrequencies(w, ~ B | A )
f <- contrastFrequencies(e, list(
"a1 vs. a2" = c( 1,-1, 0),
"(a1&a2) vs. a3" = c( 1, 1,-2)/2 ))
gA <- sum(w$results[c(3,4),1]) # B et B:A
gB <- sum(e$results[,1])
gC <- sum(f$results[,1])
expect_equal(gA, gB, tolerance = 0.0001)
expect_equal(gA, gC, tolerance = 0.0001)
# ==============================================================
# testing (2x3x4) design: B | A, B | A*C, A*B | C
set.seed(42)
dta <- GRF( list(A=c("a1","a2"), B=c("b1","b2","b3"), C=c("c1","c2","c3","c4") ), 100,
c(rep(1/50,23),.54) ) ## results in an interaction A:B
w <- anofa( Freq ~ A * B * C, dta)
# decomposition of B for each level of A
e <- emFrequencies(w, ~ B | A )
f <- contrastFrequencies(e, list(
"a1 vs. a2" = c( 1,-1, 0),
"(a1&a2) vs. a3" = c( 1, 1,-2)/2 ))
gA <- sum(w$results[c(3,5),1]) # B et B:A
gB <- sum(e$results[,1])
gC <- sum(f$results[,1])
expect_equal(gA, gB, tolerance = 0.0001)
expect_equal(gA, gC, tolerance = 0.0001)
# decomposition of B for each level of A*C
e <- emFrequencies(w, ~ B | A*C )
f <- contrastFrequencies(e, list(
"a1 vs. a2" = c( 1,-1, 0),
"(a1&a2) vs. a3" = c( 1, 1,-2)/2 ))
gA <- sum(w$results[c(3,5,7,8),1]) # B, B:A, B:C, B:A:C
gB <- sum(e$results[,1])
gC <- sum(f$results[,1])
expect_equal(gA, gB, tolerance = 0.0001)
expect_equal(gA, gC, tolerance = 0.0001)
# decomposition of A*B for each level of C
e <- emFrequencies(w, ~ A*B | C )
f <- contrastFrequencies(e, list(
"c1" = c( 1,-1, 0, 0, 0, 0)/1,
"c2" = c( 1, 1,-2, 0, 0, 0)/2,
"c3" = c( 1, 1, 1,-3, 0, 0)/3,
"c4" = c( 1, 1, 1, 1,-4, 0)/4,
"c5" = c( 1, 1, 1, 1, 1,-5)/5
))
gA <- sum(w$results[c(2,3,5,6,7,8),1]) # A, B, A:B, A:C, B:C, A:B:C
gB <- sum(e$results[,1])
gC <- sum(f$results[,1])
expect_equal(gA, gB, tolerance = 0.0001)
expect_equal(gA, gC, tolerance = 0.0001)
# ==============================================================
# testing (2x3x2x2) design: B | A, B | A*C, A*B | C
set.seed(42)
dta <- GRF( list(A=c("a1","a2"), B=c("b1","b2","b3"), C=c("c1","c2"), D=c("d1","d2") ), 200,
c(rep(1/50,23),.54) ) ## results in an interaction A:B
w <- anofa( Freq ~ A * B * C * D, dta)
# decomposition of B for each level of A
e <- emFrequencies(w, ~ B | A )
f <- contrastFrequencies(e, list(
"a1 vs. a2" = c( 1,-1, 0),
"(a1&a2) vs. a3" = c( 1, 1,-2)/2 ))
gA <- sum(w$results[c(3,6),1]) # B et B:A
gB <- sum(e$results[,1])
gC <- sum(f$results[,1])
expect_equal(gA, gB, tolerance = 0.0001)
expect_equal(gA, gC, tolerance = 0.0001)
# decomposition of B for each level of A*C
e <- emFrequencies(w, ~ B | A*C )
f <- contrastFrequencies(e, list(
"a1 vs. a2" = c( 1,-1, 0),
"(a1&a2) vs. a3" = c( 1, 1,-2)/2 ))
gA <- sum(w$results[c(3,6,9,12),1]) # B, B:A, B:C, B:A:C
gB <- sum(e$results[,1])
gC <- sum(f$results[,1])
expect_equal(gA, gB, tolerance = 0.0001)
expect_equal(gA, gC, tolerance = 0.0001)
# decomposition of A*B for each level of C
e <- emFrequencies(w, ~ A*B | C )
f <- contrastFrequencies(e, list(
"c1" = c( 1,-1, 0, 0, 0, 0)/1,
"c2" = c( 1, 1,-2, 0, 0, 0)/2,
"c3" = c( 1, 1, 1,-3, 0, 0)/3,
"c4" = c( 1, 1, 1, 1,-4, 0)/4,
"c5" = c( 1, 1, 1, 1, 1,-5)/5
))
gA <- sum(w$results[c(2,3,6,7,9,12),1]) # A, B, A:B, A:C, B:C, A:B:C
gB <- sum(e$results[,1])
gC <- sum(f$results[,1])
expect_equal(gA, gB, tolerance = 0.0001)
expect_equal(gB, gC, tolerance = 0.0001)
# decomposition of A*B for each level of C*D
e <- emFrequencies(w, ~ A*B | C*D )
f <- contrastFrequencies(e, list(
"c1" = c( 1,-1, 0, 0, 0, 0)/1,
"c2" = c( 1, 1,-2, 0, 0, 0)/2,
"c3" = c( 1, 1, 1,-3, 0, 0)/3,
"c4" = c( 1, 1, 1, 1,-4, 0)/4,
"c5" = c( 1, 1, 1, 1, 1,-5)/5
))
gA <- sum(w$results[c(2,3,6,7,8,9,10,12,13,14,15,16),1]) # tout sauf C, D, C*D
gB <- sum(e$results[,1])
gC <- sum(f$results[,1])
expect_equal(gA, gB, tolerance = 0.0001)
expect_equal(gB, gC, tolerance = 0.0001)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.