Nothing
# Copyright (C) 2018 Sebastian Sosa, Ivan Puga-Gonzalez, Hu Feng He, Xiaohua Xie, Cédric Sueur
#
# This file is part of Animal Network Toolkit Software (ANTs).
#
# ANT is a free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# ANT is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#' @title Centralisation index
#' @description Computes network Centralisation index
#' @param M a square adjacency matrix, or a list of square adjacency matrices, or an output of ANT functions \emph{stat.ds.grp}, \emph{stat.df.focal}, \emph{stat.net.lk}.
#' @param df a data frame of same length as the input matrix or a list of data frames if argument \emph{M} is a list of matrices or an output of ANT functions \emph{stat.ds.grp}, \emph{stat.df.focal}, \emph{stat.net.lk}.
#' @details Centralisation index of a network is based on eigenvector centrality.
#' @return
#' #' \itemize{
#' \item a double representing the centralisation index of the network if argument \emph{M} is a square matrix.
#' \item A list of doubles if argument \emph{M} is a list of matrices and if argument \emph{df} is \emph{NULL}. Each double represents the centralisation index of the corresponding matrix of the list.
#' \item A list of arguments \emph{df} with a new column of network centralisation index if argument\emph{df} is not \emph{NULL} and if argument \emph{M} is a list of matrices. The name of the column is adapted according to arguments values \emph{binary} and \emph{sym}.
#' \item A list of arguments \emph{df} with a new column of network centralisation index if argument \emph{df} is not \emph{NULL}, if argument \emph{M} is an output from ANT functions \emph{stat.ds.grp}, \emph{stat.df.focal}, \emph{stat.net.lk} for multiple matrices permutations, and if argument \emph{df} is a list of data frames of same length as argument \emph{M}.
#' }
#' @author Sebastian Sosa, Ivan Puga-Gonzalez
#' @references Pasquaretta, C., Levé, M., Claidiere, N., Van De Waal, E., Whiten, A., MacIntosh, A. J., ... & Crofoot, M. C. (2014). Social networks in primates: smart and tolerant species have more efficient networks. Scientific reports, 4, 7600.
#' @examples
#' met.ci(sim.m)
met.ci <- function(M, df = NULL) {
# Checking if argument M is a square matrix
test <- is.matrix(M)
if (test) {
# Compute network metric
result <- met.ci.single(M)
if (is.null(df)) {
return(result)
}
else {
# Adding network metric in argument df
df$ci <- result
return(df)
}
}
else {
# Check if argument M is an object returned by perm.ds.grp, perm.ds.focal or perm.net.nl----------------------
# This part was created to handle repermutation in functions stat.lm, stat.glm and stat.glmm
if (!is.null(attributes(M)$ANT)) {
# Check if argument M originates from a single network protocol
test1 <- attributes(M)$ANT == "ANT data stream focal sampling single matrix"
test2 <- attributes(M)$ANT == "ANT data stream group sampling single matrix"
test3 <- attributes(M)$ANT == "ANT link permutations single matrix"
# Check if argument M originates from a multiple network protocol
test4 <- attributes(M)$ANT == "ANT data stream focal sampling multiple matrices"
test5 <- attributes(M)$ANT == "ANT data stream group sampling multiple matrices"
test6 <- attributes(M)$ANT == "ANT link permutations multiple matrices"
# Check if argument M originates from ANTs multiples matrices importations
test7 <- attributes(M)$ANT == "list of matrices obtained through data frames of interactions"
# If argument M originates from a single network protocol, we work on a list of matrices
if (any(test1, test2, test3)) {
# Check if argument df is not NULL
if (is.null(df)) {
# Compute network metric
result <- lapply(M, function(x) {
r <- met.ci.single(x)
attr(r, "permutation") <- attributes(x)$permutation
return(r)
})
}
else {
if (!is.data.frame(df)) {
stop("Argument df must be a data frame when argument M is an outcome of perm.ds.grp ant function", "\r")
}
# Compute network metric
result <- lapply(M, function(x, df) {
df$ci <- met.ci.single(x)
attr(df, "permutation") <- attributes(x)$permutation
return(df)
}, df = df)
}
# If argument M is an object returned by perm.ds.grp,
# Store argument M attributes 'scan', 'ctrlf', 'method' and 'ANT'
# In case of future repermutations
if (test1) {
attr(result, "focal") <- attributes(M)$focal
attr(result, "ctrl") <- attributes(M)$ctrl
attr(result, "alters") <- attributes(M)$alters
attr(result, "method") <- attributes(M)$method
attr(result, "ANT") <- attributes(M)$ANT
return(result)
}
# If argument M is an object returned by perm.ds.focal,
# Store argument M attributes 'focal', 'ctrl', 'alters', 'method' and 'ANT'
# In case of future repermutations
if (test2) {
attr(result, "scan") <- attributes(M)$scan
attr(result, "ctrlf") <- attributes(M)$ctrlf
attr(result, "method") <- attributes(M)$method
attr(result, "ANT") <- attributes(M)$ANT
return(result)
}
# If argument M is an object returned by perm.net.nl,
# Store argument M attributes 'ANT'
# In case of future repermutations
if (test3) {
attr(result, "ANT") <- attributes(M)$ANT
return(result)
}
}
# If argument M originates from a multiple network protocol, we work on a list of lists of matrices. M[i] being a list of permutations of a specific matrix.
if (any(test4, test5, test6)) {
# Check if argument df is NULL
if (is.null(df)) {
# Compute network metric
result <- lapply(M, function(x) {
r1 <- lapply(x, function(y) {
r2 <- met.ci.single(y)
attr(r2, "permutation") <- attributes(y)$permutation
return(r2)
})
return(r1)
})
attr(result, "scan") <- attributes(M)$scan
attr(result, "ctrlf") <- attributes(M)$ctrlf
attr(result, "method") <- attributes(M)$method
attr(result, "ANT") <- attributes(M)$ANT
return(result)
}
# Check if argument df is not NULL
else {
# Check if argument df is a data frame
if (is.data.frame(df)) {
stop("Argument df must be a list of data frames of same length as the argument df input in function perm.ds.grp.", "\r")
}
# Check if each matrix size is equal to corresponding data frame size
# Which means we are working on a case of multiple repermutations
# Thus with a list of lists of matrices and data frames
if (sum(unlist(lapply(seq_along(M), function(i, a) {
nrow(a[[i]][[1]])
}, a = M))) == nrow(df[[1]])) {
tmp <- lapply(M, function(x) {
r1 <- lapply(x, function(y) {
r2 <- met.ci.single(y)
})
})
# Merge vector
tmp <- do.call(Map, c(c, tmp))
# Adding network metric in argument df
result <- lapply(seq_along(tmp), function(x, tmp, df) {
df[[x]]$ci <- tmp[[x]]
return(df[[x]])
}, tmp = tmp, df = df)
}
else {
# Merge list of data frames in a data frame
ldf <- do.call("rbind", df)
# Compute network metric
tmp <- lapply(M, function(x) {
r1 <- lapply(x, function(y) {
r2 <- met.ci.single(y)
})
})
# merge element one of each list together, merge element two of each list together, etc...
tmp <- do.call(Map, c(c, tmp))
result <- lapply(seq_along(tmp), function(tmp, ldf, i) {
ldf$ci <- tmp[[i]]
attr(ldf, "permutation") <- i
return(ldf)
}, tmp = tmp, ldf = ldf)
}
}
# If argument M is an object returned by perm.ds.grp,
# Store argument M attributes 'scan', 'ctrlf', 'method' and 'ANT'
# In case of future repermutations
if (test4) {
attr(result, "focal") <- attributes(M)$focal
attr(result, "ctrl") <- attributes(M)$ctrl
attr(result, "alters") <- attributes(M)$alters
attr(result, "method") <- attributes(M)$method
attr(result, "ANT") <- attributes(M)$ANT
return(result)
}
# If argument M is an object returned by perm.ds.focal,
# Store argument M attributes 'focal', 'ctrl', 'alters', 'method' and 'ANT'
# In case of future repermutations
if (test5) {
attr(result, "scan") <- attributes(M)$scan
attr(result, "ctrlf") <- attributes(M)$ctrlf
attr(result, "method") <- attributes(M)$method
attr(result, "ANT") <- attributes(M)$ANT
return(result)
}
# If argument M is an object returned by perm.net.nl,
# Store argument M attributes 'ANT'
# In case of future repermutations
if (test6) {
attr(result, "ANT") <- attributes(M)$ANT
return(result)
}
}
# If argument M originates from ANTs multiples matrices importations
if(test7){
# Check if argument df is NULL
if (is.null(df)) {
result <- lapply(M, met.ci.single)
return(result)
}
# Check if argument df is not NULL, is not a data frame and is a list
if (!is.null(df) & !is.data.frame(df) & is.list(df)) {
# Compute network metric
result <- mapply(function(x, y) {
y$ci <- met.ci.single(x)
return(y)
}, x = M, y = df, SIMPLIFY = FALSE)
return(result)
}
}
}
# If argument M is a list of square matrices----------------------
else {
if (!test & is.list(M)) {
# Check if argument df is NULL
if (is.null(df)) {
result <- lapply(M, met.ci.single)
return(result)
}
# Check if argument df is not NULL, is not a data frame and is a list
if (!is.null(df) & !is.data.frame(df) & is.list(df)) {
# Compute network metric
result <- mapply(function(x, y) {
y$ci <- met.ci.single(x)
return(y)
}, x = M, y = df, SIMPLIFY = FALSE)
return(result)
}
}
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.