Description Usage Arguments Value Author(s) References See Also Examples
Using the ouput RJ-MCMC samples of functions ARTIVAsubnet
, this function estimates posterior distributions for the number of CPs and their position.
1 | CP.postDist(CPsamples, burn_in=NULL, segMinLength=2)
|
CPsamples |
A matrix with the different iterations (in row)
performed with the |
burn_in |
Number of initial iterations that are discarded for the
estimation of the model distribution (posterior
distribution). The |
segMinLength |
Minimal length (number of time points) to define a
temporal segment. Must be - strictly - greater than 1 if there is
no repeated measurements for each time point in arguments
|
A list of 4 elements:
1) CPnumber
: a table containing the approximate posterior distribution for the number of CPs.
2) CPposition
: a table containing the approximate posterior
distribution for the CPs position.
3) estimatedCPnumber
: number of CP position with the greatest
posterior probability according to the approximate posterior
distribution for the number of CPs CPnumber
.
4) estimatedCPpos
: a table containing the
estimatedCPnumber
most significant CP positions according to
CPnumber
, CPposition
and segMinLength
(if parameter dyn=1
, first CP is 2
and final CP is n+1
, where n
is the number of time points).
S. Lebre and G. Lelandais.
Statistical inference of the time-varying structure of gene-regulation networks S. Lebre, J. Becq, F. Devaux, M. P. H. Stumpf, G. Lelandais, BMC Systems Biology, 4:130, 2010.
ARTIVAsubnet
, ARTIVAnet
,
plotCP.postDist
, ARTIVAsubnetAnalysis
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | # Load the ARTIVA R package
library(ARTIVA)
# Load the dataset with simulated gene expression profiles
data(simulatedProfiles)
# Name of the target gene to be analyzed with ARTIVA
targetGene = 1
# Names of the parent genes (typically transcription factors)
parentGenes = c("TF1", "TF2", "TF3", "TF4", "TF5")
# run ARTIVAsubnet
# Note that the number of iterations in the RJ-MCMC sampling is reduced
# to 'niter=20000' in this example, but it should be increased (e.g. up to
# 50000) for a better estimation.
## Not run:
ARTIVAtest = ARTIVAsubnet(targetData = simulatedProfiles[targetGene,],
parentData = simulatedProfiles[parentGenes,],
targetName = targetGene,
parentNames = parentGenes,
segMinLength = 2,
edgesThreshold = 0.6,
niter= 20000,
savePictures=FALSE)
# compute the PC posterior distribution with other parameters
outCPpostDist = CP.postDist(ARTIVAtest$Samples$CP, burn_in=10000,
segMinLength=3)
# plot the CP posterior distribution
plotCP.postDist(outCPpostDist, targetName=paste("Target", targetGene),
estimatedCPpos=outCPpostDist$estimatedCPpos)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.