ASSISTDesignC | R Documentation |
ASSISTDesignC
objects are used to design a trial
with certain characteristics provided in the object instantiation
method. This design differs from ASSISTDesign
in only how it
computes the critical boundaries, how it performs the interim
look, and what quantities are computed in a trial run.
ASSISTant::ASSISTDesign
-> ASSISTant::ASSISTDesignB
-> ASSISTDesignC
computeCriticalValues()
Compute the critical boundary values \tilde{b}, b and c for futility, efficacy and final efficacy decisions. This is time consuming so cache where possible.
ASSISTDesignC$computeCriticalValues()
a named list containing the critical value cAlpha
explore()
Explore the design using the specified number of simulations and random number seed and other parameters.
ASSISTDesignC$explore( numberOfSimulations = 5000, rngSeed = 12345, trueParameters = self$getDesignParameters(), showProgress = TRUE, saveRawData = FALSE )
numberOfSimulations
default number of simulations is 5000
rngSeed
default seed is 12345
trueParameters
the state of nature, by default the value of self$getDesignParameters()
as would be the case for a Type I error calculation. If changed, would yield power.
showProgress
a boolean flag to show progress, default TRUE
saveRawData
a flag (default FALSE
) to indicate if raw data has to be saved
a list of results
analyze()
Analyze the design given the trialExploration
data
ASSISTDesignC$analyze(trialExploration)
trialExploration
the results from a call to explore()
to simulate the design
a named list of rejections
summary()
Print the operating characteristics of the design using the analysis data
ASSISTDesignC$summary(analysis)
analysis
the analysis result from the analyze()
call
no value, just print
clone()
The objects of this class are cloneable with this method.
ASSISTDesignC$clone(deep = FALSE)
deep
Whether to make a deep clone.
ASSISTDesignB
which is a superclass of this object
data(LLL.SETTINGS) prevalence <- LLL.SETTINGS$prevalences$table1 scenario <- LLL.SETTINGS$scenarios$S0 designParameters <- list(prevalence = prevalence, mean = scenario$mean, sd = scenario$sd) ## A realistic design uses 5000 simulations or more! designC <- ASSISTDesignC$new(trialParameters = LLL.SETTINGS$trialParameters, designParameters = designParameters) print(designC) result <- designC$explore(numberOfSimulations = 100, showProgress = interactive()) analysis <- designC$analyze(result) designC$summary(analysis) ## For full examples, try: ## browseURL(system.file("full_doc/ASSISTant.html", package="ASSISTant"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.