Nothing
#' Analysis: Von Bertalanffy
#'
#' The Von Bertalanffy model. It's a kind of growth curve for a time series and takes its name from its creator, Ludwig von Bertalanffy. It is a special case of the generalized logistic function. The growth curve (biology) is used to model the average length from age in animals.
#' @param trat Numeric vector with dependent variable.
#' @param resp Numeric vector with independent variable.
#' @param initial Starting estimates
#' @param sample.curve Provide the number of observations to simulate curvature (default is 1000)
#' @param error Error bar (It can be SE - \emph{default}, SD or FALSE)
#' @param ylab Variable response name (Accepts the \emph{expression}() function)
#' @param xlab Treatments name (Accepts the \emph{expression}() function)
#' @param theme ggplot2 theme (\emph{default} is theme_bw())
#' @param legend.position Legend position (\emph{default} is "top")
#' @param r2 Coefficient of determination of the mean or all values (\emph{default} is all)
#' @param scale Sets x scale (\emph{default} is none, can be "log")
#' @param point Defines whether you want to plot all points ("all") or only the mean ("mean")
#' @param width.bar Bar width
#' @param textsize Font size
#' @param pointsize Shape size
#' @param linesize Line size
#' @param linetype line type
#' @param pointshape Format point (default is 21)
#' @param colorline Color lines
#' @param fillshape Fill shape
#' @param round round equation
#' @param xname.formula Name of x in the equation
#' @param yname.formula Name of y in the equation
#' @param comment Add text after equation
#' @param fontfamily Font family
#' @return The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.
#' @details The model function for the von Bertalanffy model is:
#' \deqn{ y = L(1-exp(-k(t-t0)))}
#' @export
#' @author Gabriel Danilo Shimizu
#' @author Leandro Simoes Azeredo Goncalves
#' @examples
#' library(AgroReg)
#' x=seq(1,20)
#' y=c(0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.91,
#' 0.92, 0.94, 0.96, 0.98, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00)
#' VB(x,y)
VB=function(trat,
resp,
initial=NA,
sample.curve=1000,
ylab="Dependent",
xlab="Independent",
theme=theme_classic(),
legend.position="top",
r2="all",
error="SE",
point="all",
width.bar=NA,
scale="none",
textsize = 12,
pointsize = 4.5,
linesize = 0.8,
linetype=1,
pointshape = 21,
fillshape = "gray",
colorline = "black",
round=NA,
yname.formula="y",
xname.formula="x",
comment=NA,
fontfamily="sans"){
requireNamespace("ggplot2")
requireNamespace("drc")
ymean=tapply(resp,trat,mean)
if(is.na(width.bar)==TRUE){width.bar=0.01*mean(trat)}
if(error=="SE"){ysd=tapply(resp,trat,sd)/sqrt(tapply(resp,trat,length))}
if(error=="SD"){ysd=tapply(resp,trat,sd)}
if(error=="FALSE"){ysd=0}
xmean=tapply(trat,trat,mean)
desvio=ysd
if(is.na(initial[1])==TRUE){
L=max(resp)
k=1
t0=1
initial=list(L=L,k=k,t0=t0)}
mod=nls(resp~L*(1-exp(-k*(trat-t0))),start = initial)
model=mod
coef=summary(mod)
if(is.na(round)==TRUE){
L=coef$coefficients[,1][1]
k=coef$coefficients[,1][2]
t0=coef$coefficients[,1][3]}
if(is.na(round)==FALSE){
L=round(coef$coefficients[,1][1],round)
k=round(coef$coefficients[,1][2],round)
t0=round(coef$coefficients[,1][3],round)}
if(r2=="all"){r2=1-deviance(model)/deviance(lm(resp~1))}
if(r2=="mean"){
model1=nls(ymean~L*(1-exp(-k*(xmean-t0))),start = initial)
r2=1-deviance(model1)/deviance(lm(ymean~1))}
r2=floor(r2*100)/100
equation=sprintf("~~~%s==%0.3e*(1-e^{%s %0.3e*(%s %s %0.3e)}) ~~~~~ italic(R^2) == %0.2f",
yname.formula,
L,
ifelse(k<0,"+","-"),
abs(k),
xname.formula,
ifelse(t0<0,"+","-"),
abs(t0),
r2)
xp=seq(min(trat),max(trat),length.out = 1000)
preditos=data.frame(x=xp,
y=predict(mod,newdata = data.frame(trat=xp)))
if(is.na(comment)==FALSE){equation=paste(equation,"~\"",comment,"\"")}
predesp=predict(mod)
predobs=resp
rmse=sqrt(mean((predesp-predobs)^2))
x=preditos$x
y=preditos$y
s=equation
data=data.frame(xmean,ymean)
data1=data.frame(trat=xmean,resp=ymean)
if(point=="mean"){
graph=ggplot(data,aes(x=xmean,y=ymean))
if(error!="FALSE"){graph=graph+
geom_errorbar(aes(ymin=ymean-ysd,ymax=ymean+ysd),size=linesize,
width=width.bar)}
graph=graph+
geom_point(aes(color="black"),size=pointsize,shape=pointshape,fill=fillshape)}
if(point=="all"){
graph=ggplot(data.frame(trat,resp),aes(x=trat,y=resp))
graph=graph+
geom_point(aes(color="black"),size=pointsize,shape=pointshape,fill=fillshape)}
graph=graph+theme+
geom_line(data=preditos,aes(x=x,
y=y,
color="black"),size=linesize,lty=linetype)+
scale_color_manual(name="",values=colorline,label=parse(text = equation))+
theme(axis.text = element_text(size=textsize,color="black",family = fontfamily),
axis.title = element_text(size=textsize,color="black",family = fontfamily),
legend.position = legend.position,
legend.text = element_text(size=textsize,family = fontfamily),
legend.direction = "vertical",
legend.text.align = 0,
legend.justification = 0)+
ylab(ylab)+xlab(xlab)
if(scale=="log"){graph=graph+scale_x_log10()}
temp1=seq(min(trat),max(trat),length.out=sample.curve)
result=predict(mod,newdata = data.frame(trat=temp1),
type="response")
maximo=temp1[which.max(result)]
respmax=result[which.max(result)]
minimo=temp1[which.min(result)]
respmin=result[which.min(result)]
aic=AIC(mod)
bic=BIC(mod)
graphs=data.frame("Parameter"=c("X Maximum",
"Y Maximum",
"X Minimum",
"Y Minimum",
"AIC",
"BIC",
"r-squared",
"RMSE"),
"values"=c(maximo,
respmax,
minimo,
respmin,
aic,
bic,
r2,
rmse))
graficos=list("Coefficients"=coef,
"values"=graphs,
"plot"=graph)
graficos
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.