View source: R/allelic_series.R
ASKAT | R Documentation |
Sequence kernel association test (SKAT) with allelic series weights.
ASKAT(
anno,
geno,
pheno,
apply_int = TRUE,
covar = NULL,
is_pheno_binary = FALSE,
min_mac = 0,
return_null_model = FALSE,
weights = c(1, 2, 3)
)
anno |
(snps x 1) annotation vector with integer values in 1 through the number of annotation categories L. |
geno |
(n x snps) genotype matrix. |
pheno |
(n x 1) phenotype vector. |
apply_int |
Apply rank-based inverse normal transform to the phenotype? Default: TRUE. Ignored if phenotype is binary. |
covar |
(n x p) covariate matrix. Defaults to an (n x 1) intercept. |
is_pheno_binary |
Is the phenotype binary? Default: FALSE. |
min_mac |
Minimum minor allele count for inclusion. Default: 0. |
return_null_model |
Return the null model in addition to the p-value? Useful if running additional SKAT tests. Default: FALSE. |
weights |
(L x 1) vector of annotation category weights. Note that the
number of annotation categories L is inferred from the length of |
If return_null_model
, a list containing the p-value and the
SKAT null model. Otherwise, a numeric p-value.
# Generate data.
data <- DGP(n = 1e3, snps = 1e2)
# Run the Allelic Series SKAT Test.
# Note: the output is a scalar p-value.
results <- ASKAT(
anno = data$anno,
geno = data$geno,
pheno = data$pheno,
covar = data$covar
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.