BANOVA.Binomial | R Documentation |
BANOVA.Binomial
implements a Hierarchical Bayesian ANOVA for a binomial response variable using a logit link and a normal heterogeneity distribution.
BANOVA.Binomial(l1_formula = "NA", l2_formula = "NA", data, id, num_trials, l2_hyper = c(1, 1, 0.0001), burnin = 5000, sample = 2000, thin = 10, adapt = 0, conv_speedup = F, jags = runjags.getOption('jagspath')) ## S3 method for class 'BANOVA.Binomial' summary(object, ...) ## S3 method for class 'BANOVA.Binomial' predict(object, newdata = NULL,...) ## S3 method for class 'BANOVA.Binomial' print(x, ...)
l1_formula |
formula for level 1 e.g. 'Y~X1+X2' |
l2_formula |
formula for level 2 e.g. '~Z1+Z2', response variable must not be included |
data |
a data.frame in long format including all features in level 1 and level 2(covariates and categorical factors) and responses |
id |
subject ID of each response unit |
num_trials |
the number of trials of each observation(=1, if it is bernoulli), the type is forced to be 'integer' |
l2_hyper |
level 2 hyperparameters, c(a, b, γ), default c(1,1,0.0001) |
burnin |
the number of burn in draws in the MCMC algorithm, default 5000 |
sample |
target samples in the MCMC algorithm after thinning, default 2000 |
thin |
the number of samples in the MCMC algorithm that needs to be thinned, default 10 |
adapt |
the number of adaptive iterations, default 0 (see run.jags) |
conv_speedup |
whether to speedup convergence, default F |
jags |
the system call or path for activating 'JAGS'. Default calls findjags() to attempt to locate 'JAGS' on your system |
object |
object of class |
newdata |
test data, either a matrix, vector or a data frame. It must have the same format with the original data (the same column number) |
x |
object of class |
... |
additional arguments,currently ignored |
Level 1 model:
y_i ~ Binomial(ntrials,p_i), p_i = logit^{-1}(η_i)
where ntrials is the binomial total for each record i, η_i = ∑_{p = 0}^{P}∑_{j=1}^{J_p}X_{i,j}^pβ_{j,s_i}^p, s_i is the subject id of response i. see BANOVA-package
BANOVA.Binomial
returns an object of class "BANOVA.Bin"
. The returned object is a list containing:
anova.table |
table of effect sizes |
coef.tables |
table of estimated coefficients |
pvalue.table |
table of p-values |
dMatrice |
design matrices at level 1 and level 2 |
samples_l2_param |
posterior samples of level 2 parameters |
data |
original data.frame |
mf1 |
model.frame of level 1 |
mf2 |
model.frame of level 2 |
JAGSmodel |
'JAGS' model |
data(colorad) # mean center Blur for effect coding colorad$blur <- colorad$blur - mean(colorad$blur) res <- BANOVA.Binomial(y~typic, ~color*blur, colorad, colorad$id, as.integer(16), burnin = 5000, sample = 2000, thin = 10) summary(res) # or use BANOVA.run require(rstan) res0 <- BANOVA.run(y~typic, ~color*blurfac, data = colorad, model_name = 'Binomial', id = 'id', num_trials = as.integer(16), iter = 100, thin = 1, chains = 2) summary(res0) table.predictions(res0) # only in-model variables(except numeric variables) will be used predict(res0, c(1, 0, 8, 2, 1, 0.03400759))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.