View source: R/BANOVA.Poisson.R
BANOVA.Poisson | R Documentation |
BANOVA.Poisson
implements a Hierarchical Bayesian ANOVA for models with a count-data response variable and normal heterogeneity distribution.
BANOVA.Poisson(l1_formula = "NA", l2_formula = "NA", data, id, l2_hyper = c(1, 1, 0.0001), burnin = 5000, sample = 2000, thin = 10, adapt = 0, conv_speedup = F, jags = runjags.getOption('jagspath')) ## S3 method for class 'BANOVA.Poisson' summary(object, ...) ## S3 method for class 'BANOVA.Poisson' predict(object, newdata = NULL,...) ## S3 method for class 'BANOVA.Poisson' print(x, ...)
l1_formula |
formula for level 1 e.g. 'Y~X1+X2' |
l2_formula |
formula for level 2 e.g. '~Z1+Z2', response variable must not be included, if missing, the single level model will be generated |
data |
a data.frame in long format including all features in level 1 and level 2(covariates and categorical factors) and responses |
id |
subject ID of each response unit |
l2_hyper |
level 2 hyperparameters, c(a, b, γ), default c(1,1,0.0001) |
burnin |
the number of burn in draws in the MCMC algorithm, default 5000 |
sample |
target samples in the MCMC algorithm after thinning, default 2000 |
thin |
the number of samples in the MCMC algorithm that needs to be thinned, default 10 |
adapt |
the number of adaptive iterations, default 0 (see run.jags) |
conv_speedup |
whether to speedup convergence, default F |
jags |
the system call or path for activating 'JAGS'. Default calls findjags() to attempt to locate 'JAGS' on your system |
object |
object of class |
newdata |
test data, either a matrix, vector or a data frame. It must have the same format with the original data (the same column number) |
x |
object of class |
... |
additional arguments,currently ignored |
Level 1 model:
y_i ~ Poisson(λ_i), λ_i = exp(η_i + ε_i)
where η_i = ∑_{p = 0}^{P}∑_{j=1}^{J_p}X_{i,j}^pβ_{j,s_i}^p, s_i is the subject id of response i, see BANOVA-package
. ε_i is a dispersion term.
BANOVA.Poisson
returns an object of class "BANOVA.Poisson"
. The returned object is a list containing:
anova.table |
table of effect sizes |
coef.tables |
table of estimated coefficients |
pvalue.table |
table of p-values |
dMatrice |
design matrices at level 1 and level 2 |
samples_l2_param |
posterior samples of level 2 parameters |
samples_l2_sigma_param |
posterior samples of level 2 standard deviations |
data |
original data.frame |
mf1 |
model.frame of level 1 |
mf2 |
model.frame of level 2 |
JAGSmodel |
'JAGS' model |
# use the bpndata dataset data(bpndata) # within-subjects model using the dependent variable : PIC_FIX res1 <- BANOVA.Poisson(PIC_FIX ~ AD_ID + PIC_SIZE+ PAGE_NUM + PAGE_POS, ~1, bpndata, bpndata$RESPONDENT_ID, burnin = 500, sample = 200, thin = 5) summary(res1) # use the goalstudy dataset data(goalstudy) goalstudy$bid <- as.integer(goalstudy$bid + 0.5) res2<-BANOVA.Poisson(bid~1, ~progress*prodvar, goalstudy, goalstudy$id, burnin = 5000, sample = 2000, thin = 10) summary(res2) # or use the BANOVA.run based on 'Stan' require(rstan) res3 <- BANOVA.run(bid~progress*prodvar, data = goalstudy, model_name = 'Poisson', id = 'id', iter = 100, thin = 1, chains = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.