Description Usage Arguments Details Value Examples

`BANOVA.T`

implements a Hierarchical Bayesian ANOVA for linear models with T-distributed response.

1 2 3 4 5 6 7 8 9 | ```
BANOVA.T(l1_formula = "NA", l2_formula = "NA", data, id, l1_hyper = c(1, 1, 1),
l2_hyper = c(1, 1, 0.0001), burnin = 5000, sample = 2000, thin = 10,
adapt = 0, conv_speedup = F, jags = runjags.getOption('jagspath'))
## S3 method for class 'BANOVA.T'
summary(object, ...)
## S3 method for class 'BANOVA.T'
predict(object, newdata = NULL,...)
## S3 method for class 'BANOVA.T'
print(x, ...)
``` |

`l1_formula` |
formula for level 1 e.g. 'Y~X1+X2' |

`l2_formula` |
formula for level 2 e.g. '~Z1+Z2', response variable must not be included, if missing, the single level model will be generated |

`data` |
a data.frame in long format including all features in level 1 and level 2(covariates and categorical factors) and responses |

`id` |
subject ID of each response unit |

`l1_hyper` |
level 1 hyperparameters, c( |

`l2_hyper` |
level 2 hyperparameters, c(a, b, |

`burnin` |
the number of burn in draws in the MCMC algorithm, default 5000 |

`sample` |
target samples in the MCMC algorithm after thinning, default 2000 |

`thin` |
the number of samples in the MCMC algorithm that needs to be thinned, default 10 |

`adapt` |
the number of adaptive iterations, default 0 (see run.jags) |

`conv_speedup` |
whether to speedup convergence, default F |

`jags` |
the system call or path for activating 'JAGS'. Default calls findjags() to attempt to locate 'JAGS' on your system |

`object` |
object of class |

`newdata` |
test data, either a matrix, vector or a data frame. It must have the same format with the original data (the same column number) |

`x` |
object of class |

`...` |
additional arguments,currently ignored |

Level 1 model:

*y_i* ~ *t(ν, η_i,σ^{-2})*

where *η_i = ∑_{p = 0}^{P}∑_{j=1}^{J_p}X_{i,j}^pβ_{j,s_i}^p*, *s_i* is the subject id of response *i*, see `BANOVA-package`

. The hyper parameters: *ν* is the degree of freedom, *ν* ~ Piosson(*λ*) and *σ* is the scale parameter, *σ^{-2}* ~ Gamma(*α, β*).

`BANOVA.T`

returns an object of class `"BANOVA.T"`

. The returned object is a list containing:

`anova.table` |
table of effect sizes |

`coef.tables` |
table of estimated coefficients |

`pvalue.table` |
table of p-values |

`dMatrice` |
design matrices at level 1 and level 2 |

`samples_l2_param` |
posterior samples of level 2 parameters |

`data` |
original data.frame |

`mf1` |
model.frame of level 1 |

`mf2` |
model.frame of level 2 |

`JAGSmodel` |
'JAGS' model |

1 2 3 4 5 6 7 8 9 10 11 | ```
# Use the ipadstudy data set
data(ipadstudy)
res <- BANOVA.T(attitude~1, ~owner + age + gender + selfbrand*conspic, ipadstudy,
ipadstudy$id, burnin = 5000, sample = 2000, thin = 10)
summary(res)
# or use BANOVA.run based on 'Stan'
require(rstan)
res19 <- BANOVA.run(attitude~owner + age + gender + selfbrand*conspic,
data = ipadstudy, model_name = 'T', id = 'id', iter = 100,
thin = 1, chains = 2)
``` |

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.