Description Usage Arguments Details Value References See Also Examples
Start BBsolve
or BBoptim
from multiple starting
points to obtain multiple solutions and to test sensitivity to starting values.
1 2 3 4 5 |
par |
A real matrix, each row of which is an argument to |
fn |
see |
gr |
Only required for optimization. See |
action |
A character string indicating whether to solve a nonlinear system or to optimize. Default is “solve”. |
method |
see |
upper |
An upper bound for box constraints. See |
lower |
An lower bound for box constraints. See |
project |
A projection
function or character string indicating its name. The projection
function that takes a point in R^n and
projects it onto a region that defines the constraints of the problem.
This is a vector-function that takes a real vector as argument and
returns a real vector of the same length.
See |
projectArgs |
A list with arguments to the |
control |
See |
quiet |
A logical variable (TRUE/FALSE). If |
details |
Logical indicating if the result should include the full
result from |
... |
arguments passed fn (via the optimization algorithm). |
The optimization or root-finder is run with each row of par
indicating
initial guesses.
list with elements par
, values
, and converged
.
It optionally returns an attribute called “details”, which is a list as long as
the number of starting values, which contains the complete object returned
by dfsane
or spg
for each starting value.
R Varadhan and PD Gilbert (2009), BB: An R Package for Solving a Large System of Nonlinear Equations and for Optimizing a High-Dimensional Nonlinear Objective Function, J. Statistical Software, 32:4, http://www.jstatsoft.org/v32/i04/
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | # Use a preset seed so the example is reproducable.
require("setRNG")
old.seed <- setRNG(list(kind="Mersenne-Twister", normal.kind="Inversion",
seed=1234))
# Finding multiple roots of a nonlinear system
brownlin <- function(x) {
# Brown's almost linear system(A.P. Morgan, ACM 1983)
# two distinct solutions if n is even
# three distinct solutions if n is odd
n <- length(x)
f <- rep(NA, n)
nm1 <- 1:(n-1)
f[nm1] <- x[nm1] + sum(x) - (n+1)
f[n] <- prod(x) - 1
f
}
p <- 9
n <- 50
p0 <- matrix(rnorm(n*p), n, p) # n starting values, each of length p
ans <- multiStart(par=p0, fn=brownlin)
pmat <- ans$par[ans$conv, 1:p] # selecting only converged solutions
ord1 <- order(abs(pmat[,1]))
round(pmat[ord1, ], 3) # all 3 roots can be seen
# An optimization example
rosbkext <- function(x){
n <- length(x)
j <- 2 * (1:(n/2))
jm1 <- j - 1
sum(100 * (x[j] - x[jm1]^2)^2 + (1 - x[jm1])^2)
}
p0 <- rnorm(50)
spg(par=p0, fn=rosbkext)
BBoptim(par=p0, fn=rosbkext)
pmat <- matrix(rnorm(100), 20, 5) # 20 starting values each of length 5
ans <- multiStart(par=pmat, fn=rosbkext, action="optimize")
ans
attr(ans, "details")[[1]] #
pmat <- ans$par[ans$conv, 1:5] # selecting only converged solutions
round(pmat, 3)
|
Loading required package: setRNG
Parameter set : 1 ...
Successful convergence.
Parameter set : 2 ...
Successful convergence.
Parameter set : 3 ...
Successful convergence.
Parameter set : 4 ...
Successful convergence.
Parameter set : 5 ...
Successful convergence.
Parameter set : 6 ...
Successful convergence.
Parameter set : 7 ...
Successful convergence.
Parameter set : 8 ...
Successful convergence.
Parameter set : 9 ...
Successful convergence.
Parameter set : 10 ...
Successful convergence.
Parameter set : 11 ...
Successful convergence.
Parameter set : 12 ...
Successful convergence.
Parameter set : 13 ...
Successful convergence.
Parameter set : 14 ...
Successful convergence.
Parameter set : 15 ...
Successful convergence.
Parameter set : 16 ...
Successful convergence.
Parameter set : 17 ...
Successful convergence.
Parameter set : 18 ...
Successful convergence.
Parameter set : 19 ...
Successful convergence.
Parameter set : 20 ...
Successful convergence.
Parameter set : 21 ...
Successful convergence.
Parameter set : 22 ...
Successful convergence.
Parameter set : 23 ...
Successful convergence.
Parameter set : 24 ...
Successful convergence.
Parameter set : 25 ...
Successful convergence.
Parameter set : 26 ...
Successful convergence.
Parameter set : 27 ...
Successful convergence.
Parameter set : 28 ...
Successful convergence.
Parameter set : 29 ...
Successful convergence.
Parameter set : 30 ...
Successful convergence.
Parameter set : 31 ...
Successful convergence.
Parameter set : 32 ...
Successful convergence.
Parameter set : 33 ...
Successful convergence.
Parameter set : 34 ...
Successful convergence.
Parameter set : 35 ...
Successful convergence.
Parameter set : 36 ...
Successful convergence.
Parameter set : 37 ...
Successful convergence.
Parameter set : 38 ...
Successful convergence.
Parameter set : 39 ...
Successful convergence.
Parameter set : 40 ...
Successful convergence.
Parameter set : 41 ...
Successful convergence.
Parameter set : 42 ...
Successful convergence.
Parameter set : 43 ...
Successful convergence.
Parameter set : 44 ...
Successful convergence.
Parameter set : 45 ...
Successful convergence.
Parameter set : 46 ...
Successful convergence.
Parameter set : 47 ...
Successful convergence.
Parameter set : 48 ...
Successful convergence.
Parameter set : 49 ...
Successful convergence.
Parameter set : 50 ...
Successful convergence.
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] -0.705 -0.705 -0.705 -0.705 -0.705 -0.705 -0.705 -0.705 16.347
[2,] 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1.229
[3,] 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1.229
[4,] 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1.229
[5,] 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1.229
[6,] 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1.229
[7,] 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1.229
[8,] 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1.229
[9,] 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1.229
[10,] 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1.229
[11,] 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1.229
[12,] 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1.229
[13,] 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1.229
[14,] 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1.229
[15,] 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1.229
[16,] 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1.229
[17,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[18,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[19,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[20,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[21,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[22,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[23,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[24,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[25,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[26,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[27,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[28,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[29,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[30,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[31,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[32,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[33,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[34,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[35,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[36,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[37,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[38,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[39,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[40,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[41,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[42,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[43,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[44,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[45,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[46,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[47,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[48,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[49,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[50,] 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
iter: 0 f-value: 22648.33 pgrad: 9061.209
iter: 10 f-value: 44.83298 pgrad: 168.1783
iter: 20 f-value: 29.42533 pgrad: 2.073708
iter: 30 f-value: 26.56617 pgrad: 52.06237
iter: 40 f-value: 23.01367 pgrad: 6.263308
iter: 50 f-value: 21.83825 pgrad: 2.040631
iter: 60 f-value: 18.25856 pgrad: 2.166934
iter: 70 f-value: 16.78601 pgrad: 2.00985
iter: 80 f-value: 14.67511 pgrad: 1.701071
iter: 90 f-value: 11.62743 pgrad: 2.440629
iter: 100 f-value: 9.914879 pgrad: 3.168448
iter: 110 f-value: 8.882793 pgrad: 31.73547
iter: 120 f-value: 7.576571 pgrad: 1.906156
iter: 130 f-value: 6.864912 pgrad: 1.99973
iter: 140 f-value: 6.328198 pgrad: 20.60001
iter: 150 f-value: 5.582651 pgrad: 2.100997
iter: 160 f-value: 4.727286 pgrad: 1.871804
iter: 170 f-value: 4.134273 pgrad: 1.568214
iter: 180 f-value: 2.987975 pgrad: 20.52218
iter: 190 f-value: 2.623606 pgrad: 0.689513
iter: 200 f-value: 2.461139 pgrad: 5.85653
iter: 210 f-value: 2.211638 pgrad: 1.01064
iter: 220 f-value: 2.13492 pgrad: 0.513771
iter: 230 f-value: 1.799606 pgrad: 6.160031
iter: 240 f-value: 1.699531 pgrad: 1.723531
iter: 250 f-value: 1.638155 pgrad: 0.421163
iter: 260 f-value: 1.346872 pgrad: 4.516073
iter: 270 f-value: 1.295948 pgrad: 0.3287437
iter: 280 f-value: 1.241569 pgrad: 0.3423485
iter: 290 f-value: 1.003999 pgrad: 0.4740795
iter: 300 f-value: 0.9668864 pgrad: 0.3245561
iter: 310 f-value: 0.7856029 pgrad: 0.2984773
iter: 320 f-value: 0.7358545 pgrad: 0.2307154
iter: 330 f-value: 0.7062176 pgrad: 6.145852
iter: 340 f-value: 0.7024254 pgrad: 11.1443
iter: 350 f-value: 0.6192393 pgrad: 0.2122829
iter: 360 f-value: 0.590852 pgrad: 0.2078623
iter: 370 f-value: 0.1914484 pgrad: 0.3003456
iter: 380 f-value: 0.1832165 pgrad: 0.1156638
iter: 390 f-value: 0.1676437 pgrad: 0.114445
iter: 400 f-value: 0.1374987 pgrad: 0.106399
iter: 410 f-value: 0.1414682 pgrad: 4.007048
iter: 420 f-value: 0.1207254 pgrad: 0.3420549
iter: 430 f-value: 0.1175114 pgrad: 0.10141
iter: 440 f-value: 0.08686819 pgrad: 0.1062418
iter: 450 f-value: 0.08254599 pgrad: 0.3201123
iter: 460 f-value: 0.07800522 pgrad: 1.575407
iter: 470 f-value: 0.07062682 pgrad: 2.791684
iter: 480 f-value: 0.0628413 pgrad: 0.1299277
iter: 490 f-value: 0.05238513 pgrad: 7.42971
iter: 500 f-value: 0.01946227 pgrad: 0.1119249
iter: 510 f-value: 0.01749382 pgrad: 0.04822032
iter: 520 f-value: 0.01299227 pgrad: 0.04074298
iter: 530 f-value: 0.01173887 pgrad: 0.09360855
iter: 540 f-value: 0.01129308 pgrad: 0.9992779
iter: 550 f-value: 0.0102092 pgrad: 0.5334276
iter: 560 f-value: 0.006627701 pgrad: 0.07300872
iter: 570 f-value: 0.004353487 pgrad: 0.2634308
iter: 580 f-value: 0.004004913 pgrad: 0.02492965
iter: 590 f-value: 0.003009892 pgrad: 0.02181283
iter: 600 f-value: 0.0017318 pgrad: 0.01683172
iter: 610 f-value: 0.001331618 pgrad: 0.01480588
iter: 620 f-value: 0.0002272057 pgrad: 0.00631634
iter: 630 f-value: 2.340518e-05 pgrad: 0.002222858
iter: 640 f-value: 3.057962e-07 pgrad: 0.01303558
$par
[1] 0.9999672 0.9999343 0.9999576 0.9999151 0.9999566 0.9999131 0.9999560
[8] 0.9999119 0.9999532 0.9999063 0.9999562 0.9999123 0.9999585 0.9999169
[15] 0.9999559 0.9999117 0.9999560 0.9999118 0.9999553 0.9999105 0.9999711
[22] 0.9999421 0.9999564 0.9999126 0.9999559 0.9999118 0.9999531 0.9999062
[29] 0.9999563 0.9999125 0.9999522 0.9999043 0.9999532 0.9999064 1.0000130
[36] 1.0000261 0.9999555 0.9999108 0.9999817 0.9999635 0.9999562 0.9999123
[43] 0.9999562 0.9999123 0.9999547 0.9999093 0.9999675 0.9999349 0.9999852
[50] 0.9999704
$value
[1] 4.133372e-08
$gradient
[1] 3.443613e-05
$fn.reduction
[1] 22648.33
$iter
[1] 642
$feval
[1] 778
$convergence
[1] 0
$message
[1] "Successful convergence"
iter: 0 f-value: 22648.33 pgrad: 9061.209
iter: 10 f-value: 40.13237 pgrad: 29.92377
iter: 20 f-value: 29.65503 pgrad: 2.084342
iter: 30 f-value: 24.15897 pgrad: 2.028767
iter: 40 f-value: 22.05032 pgrad: 2.059338
iter: 50 f-value: 19.63944 pgrad: 2.044971
iter: 60 f-value: 17.54232 pgrad: 2.083767
iter: 70 f-value: 16.73025 pgrad: 2.004452
iter: 80 f-value: 14.23287 pgrad: 1.897868
iter: 90 f-value: 13.45627 pgrad: 1.792503
iter: 100 f-value: 10.14956 pgrad: 2.049154
iter: 110 f-value: 11.60104 pgrad: 25.25272
iter: 120 f-value: 5.646377 pgrad: 2.106924
iter: 130 f-value: 4.698865 pgrad: 1.920606
iter: 140 f-value: 3.825852 pgrad: 1.852113
iter: 150 f-value: 3.586715 pgrad: 1.232265
iter: 160 f-value: 1.74063 pgrad: 0.6242387
iter: 170 f-value: 1.686722 pgrad: 0.4283466
iter: 180 f-value: 1.481776 pgrad: 0.3898767
iter: 190 f-value: 1.280082 pgrad: 0.3417461
iter: 200 f-value: 0.6583132 pgrad: 0.2120633
iter: 210 f-value: 0.5228338 pgrad: 1.904417
iter: 220 f-value: 0.4583797 pgrad: 0.165238
iter: 230 f-value: 0.3408936 pgrad: 2.653384
iter: 240 f-value: 0.3160754 pgrad: 0.132524
iter: 250 f-value: 0.213777 pgrad: 0.132754
iter: 260 f-value: 0.1566734 pgrad: 1.005709
iter: 270 f-value: 0.1375318 pgrad: 0.1962938
iter: 280 f-value: 0.1276687 pgrad: 0.115445
iter: 290 f-value: 0.06870504 pgrad: 0.08940269
iter: 300 f-value: 0.05673515 pgrad: 0.08451464
iter: 310 f-value: 0.009130962 pgrad: 0.2581156
iter: 320 f-value: 0.005917028 pgrad: 0.03364445
iter: 330 f-value: 8.363714e-06 pgrad: 0.003680363
Successful convergence.
$par
[1] 0.9999700 0.9999400 0.9999703 0.9999405 0.9999703 0.9999406 0.9999703
[8] 0.9999406 0.9999704 0.9999408 0.9999703 0.9999406 0.9999703 0.9999405
[15] 0.9999703 0.9999406 0.9999703 0.9999406 0.9999703 0.9999407 0.9999699
[22] 0.9999398 0.9999703 0.9999406 0.9999703 0.9999406 0.9999704 0.9999408
[29] 0.9999703 0.9999406 0.9999704 0.9999408 0.9999704 0.9999408 0.9999687
[36] 0.9999374 0.9999703 0.9999406 0.9999697 0.9999394 0.9999703 0.9999406
[43] 0.9999703 0.9999406 0.9999704 0.9999407 0.9999700 0.9999400 0.9999697
[50] 0.9999393
$value
[1] 2.223557e-08
$gradient
[1] 1.429335e-06
$fn.reduction
[1] 22648.33
$iter
[1] 337
$feval
[1] 338
$convergence
[1] 0
$message
[1] "Successful convergence"
$cpar
method M
2 50
Parameter set : 1 ...
iter: 0 f-value: 104.1477 pgrad: 195.7775
iter: 10 f-value: 0.8165461 pgrad: 1.691339
iter: 20 f-value: 0.3660929 pgrad: 0.6701369
iter: 30 f-value: 0.1948056 pgrad: 3.295041
iter: 40 f-value: 0.03397907 pgrad: 0.2969536
iter: 50 f-value: 0.03081283 pgrad: 0.1332274
iter: 60 f-value: 0.006901353 pgrad: 0.05083775
iter: 70 f-value: 0.0005085973 pgrad: 0.02791898
iter: 80 f-value: 3.46663e-05 pgrad: 0.003696932
Successful convergence.
Parameter set : 2 ...
iter: 0 f-value: 1043.794 pgrad: 1446.276
iter: 10 f-value: 2.737732 pgrad: 1.673578
iter: 20 f-value: 1.707397 pgrad: 2.12588
iter: 30 f-value: 0.7376359 pgrad: 1.054303
iter: 40 f-value: 0.6052184 pgrad: 14.46225
iter: 50 f-value: 0.1062305 pgrad: 0.2269856
iter: 60 f-value: 0.129 pgrad: 10.58344
iter: 70 f-value: 3.347751e-06 pgrad: 0.00101306
Successful convergence.
Parameter set : 3 ...
iter: 0 f-value: 118.5023 pgrad: 226.2174
iter: 10 f-value: 1.544505 pgrad: 2.058662
iter: 20 f-value: 1.042624 pgrad: 1.982083
iter: 30 f-value: 0.5748645 pgrad: 6.803917
iter: 40 f-value: 0.2663864 pgrad: 0.5238955
iter: 50 f-value: 0.09414201 pgrad: 0.2876652
iter: 60 f-value: 0.01393715 pgrad: 0.1003782
iter: 70 f-value: 0.005687909 pgrad: 0.06244017
iter: 80 f-value: 0.01253125 pgrad: 4.223294
iter: 90 f-value: 8.144976e-06 pgrad: 0.002220145
Successful convergence.
Parameter set : 4 ...
iter: 0 f-value: 3.438234 pgrad: 21.56433
iter: 10 f-value: 1.160692 pgrad: 4.846107
iter: 20 f-value: 0.6238095 pgrad: 4.638383
iter: 30 f-value: 0.3261322 pgrad: 5.303616
iter: 40 f-value: 0.1370613 pgrad: 6.31439
iter: 50 f-value: 0.05995255 pgrad: 5.840455
iter: 60 f-value: 0.001563663 pgrad: 0.7089548
iter: 70 f-value: 0.0002575129 pgrad: 0.009598437
Successful convergence.
Parameter set : 5 ...
iter: 0 f-value: 1504.554 pgrad: 2749.706
iter: 10 f-value: 3.520653 pgrad: 1.61283
iter: 20 f-value: 2.877953 pgrad: 1.580511
iter: 30 f-value: 2.164019 pgrad: 1.611121
iter: 40 f-value: 4.529342 pgrad: 32.99485
iter: 50 f-value: 1.224356 pgrad: 2.11142
iter: 60 f-value: 0.8293356 pgrad: 1.754804
iter: 70 f-value: 0.4338205 pgrad: 1.227703
iter: 80 f-value: 0.3383105 pgrad: 0.6689532
iter: 90 f-value: 0.2322107 pgrad: 9.774733
iter: 100 f-value: 0.01032914 pgrad: 0.08242389
iter: 110 f-value: 0.01756212 pgrad: 4.194925
iter: 120 f-value: 0.003351996 pgrad: 0.04558846
iter: 130 f-value: 0.0005658241 pgrad: 0.0183096
iter: 140 f-value: 0.01210931 pgrad: 4.355415
Successful convergence.
Parameter set : 6 ...
iter: 0 f-value: 89.85157 pgrad: 181.4924
iter: 10 f-value: 4.993377 pgrad: 1.613387
iter: 20 f-value: 3.852569 pgrad: 1.620627
iter: 30 f-value: 0.6696012 pgrad: 1.338925
iter: 40 f-value: 0.3486178 pgrad: 0.6238029
iter: 50 f-value: 0.253394 pgrad: 0.471531
iter: 60 f-value: 0.1569684 pgrad: 0.3468646
iter: 70 f-value: 0.05717632 pgrad: 0.194028
iter: 80 f-value: 0.002223493 pgrad: 0.03174228
iter: 90 f-value: 0.01307329 pgrad: 3.935886
Successful convergence.
Parameter set : 7 ...
iter: 0 f-value: 2553.425 pgrad: 3161.945
iter: 10 f-value: 3.287716 pgrad: 2.100978
iter: 20 f-value: 2.323605 pgrad: 2.061737
iter: 30 f-value: 1.22322 pgrad: 2.440811
iter: 40 f-value: 0.7073892 pgrad: 0.8351592
iter: 50 f-value: 0.1609366 pgrad: 0.7610845
iter: 60 f-value: 0.007220043 pgrad: 2.257647
iter: 70 f-value: 5.743478e-07 pgrad: 0.0004048528
Successful convergence.
Parameter set : 8 ...
iter: 0 f-value: 7.301386 pgrad: 50.49826
iter: 10 f-value: 0.4876734 pgrad: 0.6070551
iter: 20 f-value: 0.2424819 pgrad: 3.883128
iter: 30 f-value: 0.05690639 pgrad: 0.1565022
iter: 40 f-value: 9.563579e-05 pgrad: 0.005619649
Successful convergence.
Parameter set : 9 ...
iter: 0 f-value: 97.45441 pgrad: 234.7565
iter: 10 f-value: 0.4877573 pgrad: 1.020726
iter: 20 f-value: 0.1865057 pgrad: 0.5415518
iter: 30 f-value: 0.1315637 pgrad: 0.3539517
iter: 40 f-value: 0.07136122 pgrad: 0.2486395
iter: 50 f-value: 0.0427114 pgrad: 0.1848895
iter: 60 f-value: 0.03879811 pgrad: 0.1765162
iter: 70 f-value: 0.01747809 pgrad: 0.2651659
iter: 80 f-value: 0.01392243 pgrad: 0.1011329
iter: 90 f-value: 0.01635814 pgrad: 2.888483
iter: 100 f-value: 0.003261127 pgrad: 0.04737148
iter: 110 f-value: 0.01097115 pgrad: 4.169896
Successful convergence.
Parameter set : 10 ...
iter: 0 f-value: 176.7632 pgrad: 334.1628
iter: 10 f-value: 1.817845 pgrad: 2.074538
iter: 20 f-value: 1.041073 pgrad: 1.298292
iter: 30 f-value: 0.3539918 pgrad: 0.7796873
iter: 40 f-value: 0.0745093 pgrad: 6.304562
iter: 50 f-value: 0.0003067417 pgrad: 0.009971132
Successful convergence.
Parameter set : 11 ...
iter: 0 f-value: 558.4307 pgrad: 1202.867
iter: 10 f-value: 10.22346 pgrad: 53.95344
iter: 20 f-value: 1.957312 pgrad: 2.139882
iter: 30 f-value: 1.132162 pgrad: 1.63763
iter: 40 f-value: 0.6903289 pgrad: 1.115213
iter: 50 f-value: 0.3360284 pgrad: 0.4902542
iter: 60 f-value: 0.06463214 pgrad: 0.1659278
iter: 70 f-value: 2.2056e-05 pgrad: 0.007548476
Successful convergence.
Parameter set : 12 ...
iter: 0 f-value: 936.7399 pgrad: 1381.4
iter: 10 f-value: 3.791033 pgrad: 10.22923
iter: 20 f-value: 2.481176 pgrad: 1.565749
iter: 30 f-value: 1.848268 pgrad: 1.817987
iter: 40 f-value: 1.539006 pgrad: 2.018057
iter: 50 f-value: 1.147663 pgrad: 2.088939
iter: 60 f-value: 0.8899576 pgrad: 1.848375
iter: 70 f-value: 0.3315418 pgrad: 4.199062
iter: 80 f-value: 0.2255326 pgrad: 1.4914
iter: 90 f-value: 0.2123317 pgrad: 0.4528963
iter: 100 f-value: 0.04973951 pgrad: 0.1968087
iter: 110 f-value: 0.0124454 pgrad: 0.09117443
iter: 120 f-value: 0.0001859101 pgrad: 0.01256614
Successful convergence.
Parameter set : 13 ...
iter: 0 f-value: 116.0656 pgrad: 467.5044
iter: 10 f-value: 1.945429 pgrad: 2.08734
iter: 20 f-value: 0.7791629 pgrad: 1.02835
iter: 30 f-value: 0.4993475 pgrad: 0.6020762
iter: 40 f-value: 0.1458184 pgrad: 0.3209832
iter: 50 f-value: 0.0305428 pgrad: 5.139955
iter: 60 f-value: 4.704206e-07 pgrad: 0.0003640162
Successful convergence.
Parameter set : 14 ...
iter: 0 f-value: 158.3783 pgrad: 310.6516
iter: 10 f-value: 1.233519 pgrad: 2.103569
iter: 20 f-value: 0.8147884 pgrad: 17.53057
iter: 30 f-value: 0.5689345 pgrad: 1.090678
iter: 40 f-value: 0.2180282 pgrad: 0.3935711
iter: 50 f-value: 0.1540431 pgrad: 4.261513
iter: 60 f-value: 0.1201162 pgrad: 0.2838095
iter: 70 f-value: 0.07007922 pgrad: 0.8969035
iter: 80 f-value: 0.06464419 pgrad: 0.1881796
iter: 90 f-value: 0.04395621 pgrad: 0.1466053
iter: 100 f-value: 0.03089696 pgrad: 0.457613
iter: 110 f-value: 0.02483754 pgrad: 0.102058
iter: 120 f-value: 0.01280933 pgrad: 0.3240663
iter: 130 f-value: 0.008748824 pgrad: 0.0543076
iter: 140 f-value: 0.0005616496 pgrad: 0.6241075
iter: 150 f-value: 4.384569e-05 pgrad: 0.004445839
iter: 160 f-value: 1.805938e-09 pgrad: 1.906689e-05
Successful convergence.
Parameter set : 15 ...
iter: 0 f-value: 102.838 pgrad: 190.781
iter: 10 f-value: 2.725574 pgrad: 2.147047
iter: 20 f-value: 1.684569 pgrad: 2.149739
iter: 30 f-value: 0.8545071 pgrad: 4.062114
iter: 40 f-value: 0.5186857 pgrad: 0.5901075
iter: 50 f-value: 0.08392794 pgrad: 0.370899
iter: 60 f-value: 0.005359188 pgrad: 2.108803
Successful convergence.
Parameter set : 16 ...
iter: 0 f-value: 513.5289 pgrad: 684.5052
iter: 10 f-value: 1.109876 pgrad: 1.229066
iter: 20 f-value: 0.2733764 pgrad: 0.3807037
iter: 30 f-value: 0.1347278 pgrad: 9.811595
iter: 40 f-value: 8.692025e-06 pgrad: 0.001645287
Successful convergence.
Parameter set : 17 ...
iter: 0 f-value: 5781.69 pgrad: 8216.68
iter: 10 f-value: 2958.348 pgrad: 2595.746
iter: 20 f-value: 2.205485 pgrad: 16.35224
iter: 30 f-value: 0.3015938 pgrad: 0.3812378
iter: 40 f-value: 0.004954546 pgrad: 0.04162067
iter: 50 f-value: 0.009318093 pgrad: 2.72599
Successful convergence.
Parameter set : 18 ...
iter: 0 f-value: 10769.93 pgrad: 11885.55
iter: 10 f-value: 1.086693 pgrad: 1.944855
iter: 20 f-value: 0.5642495 pgrad: 3.709624
iter: 30 f-value: 0.3503109 pgrad: 0.5451841
iter: 40 f-value: 0.1757639 pgrad: 0.3478917
iter: 50 f-value: 0.06314237 pgrad: 3.063494
iter: 60 f-value: 0.01987791 pgrad: 0.09774254
iter: 70 f-value: 1.594943e-06 pgrad: 0.003916945
Successful convergence.
Parameter set : 19 ...
iter: 0 f-value: 213.8751 pgrad: 509.3601
iter: 10 f-value: 1.233618 pgrad: 1.574912
iter: 20 f-value: 0.4427763 pgrad: 1.342841
iter: 30 f-value: 0.1468199 pgrad: 0.7130403
iter: 40 f-value: 0.009736555 pgrad: 0.05829691
iter: 50 f-value: 5.906892e-08 pgrad: 0.0003150453
Successful convergence.
Parameter set : 20 ...
iter: 0 f-value: 381.5038 pgrad: 717.5239
iter: 10 f-value: 1.041809 pgrad: 1.821658
iter: 20 f-value: 0.7302731 pgrad: 4.555018
iter: 30 f-value: 0.5153623 pgrad: 0.8002466
iter: 40 f-value: 0.1290155 pgrad: 0.4946614
iter: 50 f-value: 0.04967761 pgrad: 0.156249
iter: 60 f-value: 0.001800669 pgrad: 0.02640828
iter: 70 f-value: 0.001448272 pgrad: 1.101689
Successful convergence.
$par
[,1] [,2] [,3] [,4] [,5]
[1,] 0.9999871 0.9999743 0.9999736 0.9999471 -0.96211903
[2,] 0.9999692 0.9999383 0.9999692 0.9999383 0.47463463
[3,] 0.9999735 0.9999470 0.9999585 0.9999169 0.35175427
[4,] 0.9999541 0.9999080 0.9999541 0.9999082 -0.10702036
[5,] 0.9999700 0.9999398 0.9999699 0.9999398 0.53751726
[6,] 0.9999431 0.9998860 0.9999395 0.9998788 -0.60210490
[7,] 0.9999699 0.9999398 0.9999699 0.9999398 -2.02329765
[8,] 0.9999149 0.9998295 0.9999147 0.9998291 1.15442128
[9,] 0.9999686 0.9999371 0.9999700 0.9999400 -0.23069300
[10,] 0.9997891 0.9995774 0.9997890 0.9995773 -0.36508877
[11,] 0.9999589 0.9999176 0.9999588 0.9999176 0.15751793
[12,] 0.9996967 0.9993924 0.9998152 0.9996297 0.76593222
[13,] 0.9999699 0.9999398 0.9999699 0.9999398 0.42608697
[14,] 0.9999703 0.9999403 0.9999706 0.9999410 0.92726540
[15,] 0.9999019 0.9998035 0.9999019 0.9998036 0.04613459
[16,] 0.9999665 0.9999330 0.9999665 0.9999330 -0.50428564
[17,] 0.9999615 0.9999228 0.9999615 0.9999228 -0.30044941
[18,] 0.9999697 0.9999394 0.9999697 0.9999394 0.82291598
[19,] 0.9998285 0.9996564 0.9998284 0.9996563 -0.84926880
[20,] 0.9999693 0.9999385 0.9999692 0.9999384 -0.95361010
$fvalue
[1] 8.638806e-10 1.901873e-09 2.423288e-09 4.216728e-09 1.806844e-09
[6] 6.911578e-09 1.809587e-09 1.454471e-08 1.886645e-09 8.911840e-08
[11] 3.387040e-09 1.263133e-07 1.808496e-09 1.761743e-09 1.926060e-08
[16] 2.239977e-09 2.971137e-09 1.832471e-09 5.892285e-08 1.892542e-09
$converged
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[16] TRUE TRUE TRUE TRUE TRUE
NULL
[,1] [,2] [,3] [,4] [,5]
[1,] 1 1.000 1 1 -0.962
[2,] 1 1.000 1 1 0.475
[3,] 1 1.000 1 1 0.352
[4,] 1 1.000 1 1 -0.107
[5,] 1 1.000 1 1 0.538
[6,] 1 1.000 1 1 -0.602
[7,] 1 1.000 1 1 -2.023
[8,] 1 1.000 1 1 1.154
[9,] 1 1.000 1 1 -0.231
[10,] 1 1.000 1 1 -0.365
[11,] 1 1.000 1 1 0.158
[12,] 1 0.999 1 1 0.766
[13,] 1 1.000 1 1 0.426
[14,] 1 1.000 1 1 0.927
[15,] 1 1.000 1 1 0.046
[16,] 1 1.000 1 1 -0.504
[17,] 1 1.000 1 1 -0.300
[18,] 1 1.000 1 1 0.823
[19,] 1 1.000 1 1 -0.849
[20,] 1 1.000 1 1 -0.954
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.