Nothing
# ============================================================================
# Wrapper to prob_zk function
#
# Details:
# Compute the nsmax closest locations of the cs to the estimation location, x
#
# Inputs:
# - x vector of estimation location
# - ch matrix of hard data locations
# - nhmax number of hard data locations closer to the estimation location
#
# Outputs:
# - A two column matrix of locations closest to the estimation location
# ============================================================================
ch_nhmax <- function(x, ch, nhmax) {
if (nhmax > nrow(ch)) {
stop("Error: The nhmax must not exceed the number of hard-data locations.")
}
n <- nrow(ch) # Number of rows in cs
# Pre-allocate distance vector
dist <- numeric(n)
x <- matrix(c(x), ncol = 2)
# Compute squared Euclidean distances directly
for (i in 1:n) {
dist[i] <- sum((x - ch[i, ])^2)
}
# Sort the distances and get the indices of the smallest `nsmax`
index <- order(dist)[1:nhmax]
ch_new <- ch[index, , drop = FALSE]
return(list(ch_new, index))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.