R/findCells.R

Defines functions findCells

Documented in findCells

#' @title Find cell type proportions from bulk gene expression data using marker genes.
#' @description Input a gene expression matrix and your own data frame of marker genes, and this function will estimate cell type proportions in your data set using one of the SVD or PCA dimension reduction approaches.
#' @param inputMat Numeric gene expression data frame or matrix, with rownames corresponding to gene names, some of which are marker genes, and columns corresponding to samples.
#' @param markers Data frame with marker genes in one column (named "marker") and the cell type that that gene symbol corresponds to in another column (named "cell").
#' @param nMarker The number of marker genes (that are present in your expression data set) to use in estimating the surrogate cell type proportion variable for each cell type.
#' @param method To estimate the cell type proportions, can either use PCA or SVD.
#' @param scale Whether or not to scale the gene expression data from each marker gene prior to using it as an input for dimension reduction.
#' @return A sample-by-cell type matrix of estimate cell type proportion variables.
#' @references Chikina M, Zaslavsky E, Sealfon SC. CellCODE: a robust latent variable approach to differential expression analysis for heterogeneous cell populations. Bioinformatics. 2015;31(10):1584-91.
#'@examples
#'\donttest{
#'cell_type_proportions = findCells(aba_marker_expression,
#'  markers = markers_df_brain, nMarker = 10)
#'str(cell_type_proportions)
#'}
#' @export
findCells <- function(inputMat, markers, nMarker = 50, method = "SVD", scale = TRUE){

  if(!all(c("markers", "cell") %in% colnames(markers))){
    stop("The markers argument must be a df with a column named marker s(gene symbols) and a column named cell (corresponding cell types).")
  }

  if(!any(markers$markers %in% rownames(inputMat))) stop("At least one marker gene symbol must be present in the rownames of the input matrix.")

  if(!method %in% c("SVD", "PCA")) stop("The method argument must be either SVD or PCA.")

  cell_types = unique(markers$cell)

  #choose the appropriate number of top markers from each cell type that are actually present in the data set
  for(i in 1:length(cell_types)){
  top_markers_tmp = markers[markers$cell == cell_types[i], ]
  top_markers_present = vector()
  top_markers_present_count = 0
    for(j in 1:nrow(top_markers_tmp)){
      gene = top_markers_tmp[j, "markers"]
      if(gene %in% rownames(inputMat)){
        if(sum(inputMat[gene, ] > 0)){
          top_markers_present = c(top_markers_present, gene)
          top_markers_present_count = top_markers_present_count + 1
        }
      }
      if(top_markers_present_count == nMarker) break
    }
    tmp_markers_top = data.frame(markers = top_markers_present,
      cell = rep(cell_types[i], length(top_markers_present)), stringsAsFactors = FALSE)
    if(i == 1){
      markers_df = tmp_markers_top
    }
    if(i > 1){
      markers_df = rbind(markers_df, tmp_markers_top)
    }
  }

  #adapted from CellCODE
  for(i in 1:length(cell_types)){
    genes = markers_df[markers_df$cell == cell_types[i], "markers"]
    data = inputMat[genes, ]
    if(scale){
      means = apply(data, 1, mean)
      data = sweep(data, 1, means, "-")
    }
    if(method == "PCA"){
      pcres = prcomp(t(data))
      props = pcres$x[ , 1]
    }
    if(method == "SVD"){
      svdres = svd(data)
      props = svdres$v[ , 1]
    }
    cor_res = cor(props, t(data[genes, ]))
    if (mean(cor_res, na.rm = TRUE) < 0) {
        props = -props
    }
    if(i == 1){
      SPVs = props
    } else {
      SPVs = cbind(SPVs, props)
    }
  }

  colnames(SPVs) = cell_types
  rownames(SPVs) = colnames(inputMat)

  return(SPVs)

}

Try the BRETIGEA package in your browser

Any scripts or data that you put into this service are public.

BRETIGEA documentation built on May 2, 2019, 2:43 a.m.