Nothing
#########################
# Author : Gireg Willame
# June 2022.
#
# The goal is to check that the BT_Summary
# computation is correct.
#
########################
testthat::test_that("Check the BT_Summary function - Inputs", {
skip_on_cran()
# Create datasets.
set.seed(4)
n <- 10000 #100000
Gender <- factor(sample(c("male", "female"), n, replace = TRUE))
Age <- sample(c(18:65), n, replace = TRUE)
Split <- factor(sample(c("yes", "no"), n, replace = TRUE))
Sport <- factor(sample(c("yes", "no"), n, replace = TRUE))
lambda <- 0.1 * ifelse(Gender == "male", 1.1, 1)
lambda <- lambda * (1 + 1 / (Age - 17) ^ 0.5)
lambda <- lambda * ifelse(Sport == "yes", 1.15, 1)
ExpoR <- runif(n)
Y <- rpois(n, ExpoR * lambda)
Y_normalized <- Y / ExpoR
datasetFull <-
data.frame(Y, Gender, Age, Split, Sport, ExpoR, Y_normalized)
# Run a BT algo.
set.seed(4)
paramsBT <-
list(
formula = as.formula("Y_normalized ~ Age + Sport + Split + Gender"),
data = datasetFull,
tweedie.power = 1,
ABT = T,
n.iter = 200,
train.fraction = 0.8,
interaction.depth = 4,
shrinkage = 0.01,
bag.fraction = 0.5,
colsample.bytree = NULL,
keep.data = T,
is.verbose = F,
cv.folds = 1,
folds.id = NULL,
n.cores = 1,
weights = datasetFull$ExpoR
)
BT_algo <- do.call(BT, paramsBT)
# Check n.iter
n.iter <- 0
expect_error(summary(BT_algo, n.iter = n.iter))
cBars <- 0.4
expect_error(summary(BT_algo, n.iter = n.iter))
cBars <- 2.546
expect_error(summary(BT_algo, n.iter = n.iter))
n.iter <- c(3, 4)
expect_error(summary(BT_algo, n.iter = n.iter))
n.iter <- NULL
expect_error(summary(BT_algo, n.iter = n.iter))
n.iter <- NA
expect_error(summary(BT_algo, n.iter = n.iter))
n.iter <- "Text"
expect_error(summary(BT_algo, n.iter = n.iter))
n.iter <- F
expect_error(summary(BT_algo, n.iter = n.iter))
# Check cBars
cBars <- 0.4
expect_error(summary(BT_algo, cBars = cBars))
cBars <- 2.546
expect_error(summary(BT_algo, cBars = cBars))
cBars <- c(3, 4)
expect_error(summary(BT_algo, cBars = cBars))
cBars <- NULL
expect_error(summary(BT_algo, cBars = cBars))
cBars <- NA
expect_error(summary(BT_algo, cBars = cBars))
cBars <- "Text"
expect_error(summary(BT_algo, cBars = cBars))
# cBars <- F ; expect_error(summary(BT_algo, cBars=cBars)) # cBars = F -> considered as 0.
# Check plot_it
plot_it <- 1
expect_error(summary(BT_algo, plot_it = plot_it))
plot_it <- 0.4
expect_error(summary(BT_algo, plot_it = plot_it))
plot_it <- 2.785
expect_error(summary(BT_algo, plot_it = plot_it))
plot_it <-
c(3, 4)
expect_error(summary(BT_algo, plot_it = plot_it))
plot_it <- NULL
expect_error(summary(BT_algo, plot_it = plot_it))
plot_it <- NA
expect_error(summary(BT_algo, plot_it = plot_it))
plot_it <-
"Text"
expect_error(summary(BT_algo, plot_it = plot_it))
# Check order_it
order_it <- 1
expect_error(summary(BT_algo, order_it = order_it))
order_it <-
0.4
expect_error(summary(BT_algo, order_it = order_it))
order_it <-
2.785
expect_error(summary(BT_algo, order_it = order_it))
order_it <-
c(3, 4)
expect_error(summary(BT_algo, order_it = order_it))
order_it <-
NULL
expect_error(summary(BT_algo, order_it = order_it))
order_it <- NA
expect_error(summary(BT_algo, order_it = order_it))
order_it <-
"Text"
expect_error(summary(BT_algo, order_it = order_it))
# Check normalize
normalize <-
1
expect_error(summary(BT_algo, normalize = normalize))
normalize <-
0.4
expect_error(summary(BT_algo, normalize = normalize))
normalize <-
2.785
expect_error(summary(BT_algo, normalize = normalize))
normalize <-
c(3, 4)
expect_error(summary(BT_algo, normalize = normalize))
normalize <-
NULL
expect_error(summary(BT_algo, normalize = normalize))
normalize <-
NA
expect_error(summary(BT_algo, normalize = normalize))
normalize <-
"Text"
expect_error(summary(BT_algo, normalize = normalize))
# Check method
expect_error(summary(BT_algo, method = NonExistingMethod))
})
testthat::test_that("Check the BT_Summary function - Results", {
# Create datasets.
set.seed(4)
n <- 10000#100000
Gender <- factor(sample(c("male", "female"), n, replace = TRUE))
Age <- sample(c(18:65), n, replace = TRUE)
Split <- factor(sample(c("yes", "no"), n, replace = TRUE))
Sport <- factor(sample(c("yes", "no"), n, replace = TRUE))
lambda <- 0.1 * ifelse(Gender == "male", 1.1, 1)
lambda <- lambda * (1 + 1 / (Age - 17) ^ 0.5)
lambda <- lambda * ifelse(Sport == "yes", 1.15, 1)
ExpoR <- runif(n)
Y <- rpois(n, ExpoR * lambda)
Y_normalized <- Y / ExpoR
datasetFull <-
data.frame(Y, Gender, Age, Split, Sport, ExpoR, Y_normalized)
# Run a BT algo.
set.seed(4)
paramsBT <-
list(
formula = as.formula("Y_normalized ~ Age + Sport + Split + Gender"),
data = datasetFull,
tweedie.power = 1,
ABT = T,
n.iter = 200,
train.fraction = 0.8,
interaction.depth = 4,
shrinkage = 0.01,
bag.fraction = 0.5,
colsample.bytree = NULL,
keep.data = T,
is.verbose = F,
cv.folds = 3,
folds.id = NULL,
n.cores = 1,
weights = datasetFull$ExpoR
)
BT_algo <- do.call(BT, paramsBT)
####
# Check results with validation n.iter.
####
n.iter <- BT_perf(BT_algo, plot.it = F, method = "validation")
ri <- .BT_relative_influence(BT_algo, n.iter = n.iter)
ri[ri < 0] <- 0
normalizedRI <- 100 * ri / sum(ri)
ordering <-
order(-ri)
orderedRI <-
ri[ordering]
normalizedAndOrderedRI <- normalizedRI[ordering]
orderVarNames <- BT_algo$var.names[ordering]
expect_equal(
summary(
BT_algo,
plot_it = F,
n.iter = n.iter,
order_it = F,
normalize = F
),
data.frame(var = BT_algo$var.names, rel_inf = ri)
)
expect_equal(
summary(
BT_algo,
plot_it = F,
n.iter = n.iter,
order_it = T,
normalize = F
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = F,
n.iter = n.iter,
order_it = F,
normalize = T
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(BT_algo, plot_it = F, n.iter = n.iter),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
# Visual check.
expect_equal(
summary(BT_algo, plot_it = T, n.iter = n.iter),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
cBars = 0
),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
cBars = 44
),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
cBars = 3
),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = F,
normalize = T
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = F,
normalize = T,
cBars = 0
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = F,
normalize = T,
cBars = 44
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = F,
normalize = T,
cBars = 3
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = T,
normalize = F
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = T,
normalize = F,
cBars = 0
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = T,
normalize = F,
cBars = 44
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = T,
normalize = F,
cBars = 3
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
####
# Check results with cv n.iter.
####
n.iter <- BT_perf(BT_algo, plot.it = F, method = "cv")
ri <- .BT_relative_influence(BT_algo, n.iter = n.iter)
ri[ri < 0] <- 0
normalizedRI <- 100 * ri / sum(ri)
ordering <-
order(-ri)
orderedRI <-
ri[ordering]
normalizedAndOrderedRI <- normalizedRI[ordering]
orderVarNames <- BT_algo$var.names[ordering]
expect_equal(
summary(
BT_algo,
plot_it = F,
n.iter = n.iter,
order_it = F,
normalize = F
),
data.frame(var = BT_algo$var.names, rel_inf = ri)
)
expect_equal(
summary(
BT_algo,
plot_it = F,
n.iter = n.iter,
order_it = T,
normalize = F
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = F,
n.iter = n.iter,
order_it = F,
normalize = T
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(BT_algo, plot_it = F, n.iter = n.iter),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
# Visual check.
expect_equal(
summary(BT_algo, plot_it = T, n.iter = n.iter),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
cBars = 0
),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
cBars = 44
),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
cBars = 3
),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = F,
normalize = T
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = F,
normalize = T,
cBars = 0
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = F,
normalize = T,
cBars = 44
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = F,
normalize = T,
cBars = 3
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = T,
normalize = F
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = T,
normalize = F,
cBars = 0
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = T,
normalize = F,
cBars = 44
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = T,
normalize = F,
cBars = 3
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
####
# Check results with validation n.iter.
####
expect_message(n.iter <-
BT_perf(BT_algo, plot.it = F, method = "OOB"))
ri <- .BT_relative_influence(BT_algo, n.iter = n.iter)
ri[ri < 0] <- 0
normalizedRI <- 100 * ri / sum(ri)
ordering <-
order(-ri)
orderedRI <-
ri[ordering]
normalizedAndOrderedRI <- normalizedRI[ordering]
orderVarNames <- BT_algo$var.names[ordering]
expect_equal(
summary(
BT_algo,
plot_it = F,
n.iter = n.iter,
order_it = F,
normalize = F
),
data.frame(var = BT_algo$var.names, rel_inf = ri)
)
expect_equal(
summary(
BT_algo,
plot_it = F,
n.iter = n.iter,
order_it = T,
normalize = F
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = F,
n.iter = n.iter,
order_it = F,
normalize = T
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(BT_algo, plot_it = F, n.iter = n.iter),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
# Visual check.
expect_equal(
summary(BT_algo, plot_it = T, n.iter = n.iter),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
cBars = 0
),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
cBars = 44
),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
cBars = 3
),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = F,
normalize = T
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = F,
normalize = T,
cBars = 0
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = F,
normalize = T,
cBars = 44
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = F,
normalize = T,
cBars = 3
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = T,
normalize = F
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = T,
normalize = F,
cBars = 0
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = T,
normalize = F,
cBars = 44
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = T,
normalize = F,
cBars = 3
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
####
# Check results with max n.iter.
####
n.iter <- BT_algo$BTParams$n.iter
ri <- .BT_relative_influence(BT_algo, n.iter = n.iter)
ri[ri < 0] <- 0
normalizedRI <- 100 * ri / sum(ri)
ordering <-
order(-ri)
orderedRI <-
ri[ordering]
normalizedAndOrderedRI <- normalizedRI[ordering]
orderVarNames <- BT_algo$var.names[ordering]
expect_equal(
summary(
BT_algo,
plot_it = F,
order_it = F,
normalize = F
),
data.frame(var = BT_algo$var.names, rel_inf = ri)
)
expect_equal(
summary(
BT_algo,
plot_it = F,
order_it = T,
normalize = F
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = F,
order_it = F,
normalize = T
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(BT_algo, plot_it = F),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
# Visual check.
expect_equal(
summary(BT_algo, plot_it = T),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
expect_equal(
summary(BT_algo, plot_it = T, cBars = 0),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
expect_equal(
summary(BT_algo, plot_it = T, cBars = 44),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
expect_equal(
summary(BT_algo, plot_it = T, cBars = 3),
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
order_it = F,
normalize = T
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
order_it = F,
normalize = T,
cBars = 0
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
order_it = F,
normalize = T,
cBars = 44
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
order_it = F,
normalize = T,
cBars = 3
),
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
order_it = T,
normalize = F
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
order_it = T,
normalize = F,
cBars = 0
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
order_it = T,
normalize = F,
cBars = 44
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
expect_equal(
summary(
BT_algo,
plot_it = T,
order_it = T,
normalize = F,
cBars = 3
),
data.frame(var = orderVarNames, rel_inf = orderedRI)
)
# With n.iter > max n.iter performed => we expect the same results as previously obtained and warning message
n.iter <- 450
expect_warning(
res <-
summary(
BT_algo,
plot_it = F,
n.iter = n.iter,
order_it = F,
normalize = F
),
"Exceeded total number of BT terms. Results use n.iter=200 terms.\n"
)
expect_equal(res, data.frame(var = BT_algo$var.names, rel_inf = ri))
expect_warning(
res <-
summary(
BT_algo,
plot_it = F,
n.iter = n.iter,
order_it = T,
normalize = F
),
"Exceeded total number of BT terms. Results use n.iter=200 terms.\n"
)
expect_equal(res, data.frame(var = orderVarNames, rel_inf = orderedRI))
expect_warning(
res <-
summary(
BT_algo,
plot_it = F,
n.iter = n.iter,
order_it = F,
normalize = T
),
"Exceeded total number of BT terms. Results use n.iter=200 terms.\n"
)
expect_equal(res,
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI))
expect_warning(
res <-
summary(BT_algo, plot_it = F, n.iter = n.iter),
"Exceeded total number of BT terms. Results use n.iter=200 terms.\n"
)
expect_equal(res,
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI))
# Visual check.
expect_warning(
res <-
summary(BT_algo, plot_it = T, n.iter = n.iter),
"Exceeded total number of BT terms. Results use n.iter=200 terms.\n"
)
expect_equal(res,
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI))
expect_warning(
res <-
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
cBars = 0
),
"Exceeded total number of BT terms. Results use n.iter=200 terms.\n"
)
expect_equal(res,
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI))
expect_warning(
res <-
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
cBars = 44
),
"Exceeded total number of BT terms. Results use n.iter=200 terms.\n"
)
expect_equal(res,
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI))
expect_warning(
res <-
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
cBars = 3
),
"Exceeded total number of BT terms. Results use n.iter=200 terms.\n"
)
expect_equal(res,
data.frame(var = orderVarNames, rel_inf = normalizedAndOrderedRI))
expect_warning(
res <-
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = F,
normalize = T
),
"Exceeded total number of BT terms. Results use n.iter=200 terms.\n"
)
expect_equal(res,
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI))
expect_warning(
res <-
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = F,
normalize = T,
cBars = 0
),
"Exceeded total number of BT terms. Results use n.iter=200 terms.\n"
)
expect_equal(res,
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI))
expect_warning(
res <-
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = F,
normalize = T,
cBars = 44
),
"Exceeded total number of BT terms. Results use n.iter=200 terms.\n"
)
expect_equal(res,
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI))
expect_warning(
res <-
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = F,
normalize = T,
cBars = 3
),
"Exceeded total number of BT terms. Results use n.iter=200 terms.\n"
)
expect_equal(res,
data.frame(var = BT_algo$var.names, rel_inf = normalizedRI))
expect_warning(
res <-
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = T,
normalize = F
),
"Exceeded total number of BT terms. Results use n.iter=200 terms.\n"
)
expect_equal(res, data.frame(var = orderVarNames, rel_inf = orderedRI))
expect_warning(
res <-
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = T,
normalize = F,
cBars = 0
),
"Exceeded total number of BT terms. Results use n.iter=200 terms.\n"
)
expect_equal(res, data.frame(var = orderVarNames, rel_inf = orderedRI))
expect_warning(
res <-
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = T,
normalize = F,
cBars = 44
),
"Exceeded total number of BT terms. Results use n.iter=200 terms.\n"
)
expect_equal(res, data.frame(var = orderVarNames, rel_inf = orderedRI))
expect_warning(
res <-
summary(
BT_algo,
plot_it = T,
n.iter = n.iter,
order_it = T,
normalize = F,
cBars = 3
),
"Exceeded total number of BT terms. Results use n.iter=200 terms.\n"
)
expect_equal(res, data.frame(var = orderVarNames, rel_inf = orderedRI))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.