Nothing
      BPSplotHR<-function(sample=BPSpriorSample(0),npts=101,tu="Time Unit",title=NULL){
    timegrid<-seq(0,sample$hyp$T00,len=npts) # time points of interest
    if(is.null(sample$dat)){ # prior sample
        # compute pointwise mean and standard deviation
        ns<-length(sample$hyp$knots)-sample$hyp$ord # number of splines
        cormat<-matrix(NA,ns,ns)
        for(i in 1:ns) for(j in 1:ns) cormat[i,j]<-sample$hyp$c^abs(i-j)
        B<-splineDesign(knots=sample$hyp$knots,x=timegrid,ord=sample$hyp$ord)
        varlogHR<-sample$hyp$w*diag(B%*%cormat%*%t(B))
        hazaMEAN<-exp(sample$hyp$m+0.5*varlogHR)
        hazaSD<-sqrt(exp(2*(sample$hyp$m+varlogHR))-exp(2*sample$hyp$m+varlogHR))
        # compute maximum value of interest
        hazaMAX<-max(hazaMEAN+hazaSD)
    } else{ # posterior sample
        # compute maximum value of interest
        hazaMAX<-max(qgamma(0.975,sum(sample$dat$obs),sum(sample$dat$times)),
                     2*sum(sample$dat$obs)/sum(sample$dat$times))
    } # end if(is.null(sample$dat))
    ss<-nrow(sample$eta) # sample size
    if(ss>0){# compute hazard rates
        hazarate<-BPSevalHR(timegrid,sample)
        if(is.null(sample$dat)){ # prepare prior trajectories
            # create a pool of colors
            auxcol<-gray.colors(ss)
            # fix maximum value of interest
            hazaMAX<-max(hazaMAX,hazarate)
        }else{ # prepare posterior summaries
            # compute posterior mean
            hazamean<-apply(hazarate,2,mean)
            # compute posterior credible band
            hazalower<-apply(hazarate,2,quantile,probs=0.025)
            hazupper<-apply(hazarate,2,quantile,probs=0.975)
            # fix maximum value of interest
            hazaMAX<-max(hazaMAX,hazupper)
        } # end if(is.null(sample$dat))
    } # end if(ss>0)
    if (is.null(title)) if (is.null(sample$dat)) title<-"Prior Hazard Rate"
    else title<-"Posterior Hazard Rate" # prepare the plotting area
    plot(c(timegrid[1],timegrid[npts]),c(0,hazaMAX),type="n",xlab=paste(tu,"s",sep=""),
         ylab=paste("Events / ",tu,sep=""),main=title)
    if(is.null(sample$dat)){ # prior sample
        # plot pointwise mean
        lines(timegrid,hazaMEAN,lty="dashed")
        # add +/- one standard deviation band
        lines(timegrid,hazaMEAN+hazaSD,lty="dashed")
        lines(timegrid,pmax(hazaMEAN-hazaSD,rep(0,npts)),lty="dashed")
        # plot prior trajectories
        if(ss>0) for(it in 1:ss) lines(timegrid,hazarate[it,],col=auxcol[it])
    }else{ # posterior sample
        if(ss>0){ # posterior summaries
            lines(timegrid,hazamean)
            lines(timegrid,hazalower)
            lines(timegrid,hazupper)
        } # end if(ss>0)
        # analogous for the constant hazard rate model (using a gamma prior and letting its
        #                                               shape and rate parameters tend to zero)
        abline(h=sum(sample$dat$obs)/sum(sample$dat$times),lty="dashed")
		abline(h=qgamma(0.025,sum(sample$dat$obs),sum(sample$dat$times)),lty="dashed")
        abline(h=qgamma(0.975,sum(sample$dat$obs),sum(sample$dat$times)),lty="dashed")
        # mark the observations
        for(auxti in 1:nrow(sample$dat))
            if(sample$dat$obs[auxti]) points(sample$dat$times[auxti],0,pch="x") # exact
            else points(sample$dat$times[auxti],0,pch="o") # censored
    } # end if(is.null(sample$dat))
} # end BPSplotHR
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.