Nothing
B_PBM.IDX <- function(x, kmax, method = "FCM",
fzm = 2, nstart = 20, iter = 100,
alpha = "default",
mult.alpha = 1/2){
if(missing(x))
stop("Missing input argument. A numeric data frame or matrix is required")
if(missing(kmax))
stop("Missing input argument. A maximum number of clusters is required")
if(!is.numeric(kmax))
stop("Argument 'kmax' must be numeric")
if(kmax > nrow(x))
stop("The maximum number of clusters for consideration should be less than or equal to the number of data points in dataset.")
if(!any(method == c("FCM","EM")))
stop("Argument 'method' should be one of 'FCM','EM' ")
if(method == "FCM"){
if(fzm <= 1)
stop("Argument 'fcm' should be the number greater than 1",call. = FALSE)
if(!is.numeric(nstart))
stop("Argument 'nstart' must be numeric")
if(!is.numeric(iter))
stop("Argument 'iter' must be numeric")
}
if(!is.numeric(mult.alpha))
stop("Argument 'mult.alpha' must be numeric")
n = nrow(x)
kmin = 2 #fix value
if(any(alpha %in% "default")){
alpha = rep(1,length(kmin:kmax))
}
if(length(kmin:kmax) != length(alpha)) # check
stop("The length of kmin to kmax must be equal to the length of alpha")
adj.alpha = alpha*(n)^mult.alpha
# Defined vector
pbm = vector()
# start k loop
for(k in kmin:kmax){
if(method == "EM"){ # EM Algorithm
EM.model <- Mclust(x,G=k,verbose=FALSE)
assign("m",EM.model$z)
assign("c",t(EM.model$parameters$mean))
}else if(method == "FCM"){ # FCM Algorithm
wd = Inf
# cm.out = list()
for (nr in 1:nstart){
FCM.model = cmeans(x,k,iter,verbose=FALSE,method="cmeans",m=fzm)
if (FCM.model$withinerror < wd){
wd = FCM.model$withinerror
FCM.model2 =FCM.model
}
}
assign("m",FCM.model2$membership)
assign("c",FCM.model2$centers)
}
# Defined variable
d3 = vector()
n = nrow(x)
d7 = sqrt(rowSums((x-matrix(colMeans(x),n,ncol(x),byrow=T))^2)) #NW
d8 = vector()
d9 = vector()
for (j in 1:k){
center = matrix(c[j,],n,ncol(x),byrow = T)
d8[j] = (m[,j])%*%sqrt(rowSums((x-center)^2))
}
s=1
for(i in 1:(k-1)){
for(j in (i+1):k){
d3[s]=sum((c[i,]-c[j,])^2)
d9[s]= sqrt(d3[s]) #NW
s=s+1
}
}
pbm[k-kmin+1] = ((1/k)*(sum(d7)*max(d9)/sum(d8)))^2
} #end loop if for indexes based on compactness and seperated
CVI.dframe = data.frame("C" = kmin:kmax,"Index" = pbm)
minGI = min(CVI.dframe[,"Index"]) # The largest value of the GI indicates the optimal number of cluster
rk = (CVI.dframe[,"Index"] - minGI)/sum(CVI.dframe[,"Index"] - minGI)
nrk = n*rk
ex = (adj.alpha + nrk) / (sum(adj.alpha)+ n)
var = ((adj.alpha+nrk)*(sum(adj.alpha)+n - adj.alpha - nrk))/((sum(adj.alpha)+n)^2*(sum(adj.alpha)+n+1))
BCVI = data.frame("k" = kmin:kmax,"BCVI" = ex)
VarBCVI = data.frame("k" = kmin:kmax,"Var" = var)
colnames(CVI.dframe) = c("k","PBM")
S_PBM.result = list("BCVI" = BCVI,"VAR" = VarBCVI,"Index" = CVI.dframe)
return(S_PBM.result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.