Nothing
cl <- parallel::makeCluster(2)
test_that("compute_mallows works with seed in parallel", {
set.seed(1)
mod <- compute_mallows(
data = setup_rank_data(potato_visual),
compute_options = set_compute_options(nmc = 10),
cl = cl
)
expect_equal(mod$rho$value[[145]], 7)
expect_equal(mod$rho$value[[89]], 14)
expect_true(all(apply(mod$rho_samples, 3, validate_permutation)))
})
test_that("compute_mallows works with initial values and clusters", {
set.seed(1)
mod <- compute_mallows(
setup_rank_data(potato_visual),
model_options = set_model_options(n_clusters = 3),
compute_options = set_compute_options(nmc = 10),
initial_values = set_initial_values(alpha_init = c(2, 3)),
cl = cl
)
expect_true(
all(subset(mod$alpha, chain == 1 & iteration == 1)$value == 2)
)
expect_true(
all(subset(mod$alpha, chain == 2 & iteration == 1)$value == 3)
)
})
parallel::stopCluster(cl)
test_that("compute_mallows fails properly", {
expect_error(
compute_mallows(
data = setup_rank_data(
cbind(potato_visual, potato_visual + 20, potato_visual + 40)
),
model_options = set_model_options(metric = "spearman")
),
"Exact partition function not known."
)
expect_error(
compute_mallows(data = potato_visual),
"data must be an object of class BayesMallowsData"
)
prefs <- data.frame(
assessor = 1, bottom_item = c(1, 2, 3), top_item = c(2, 1, 2)
)
expect_error(
compute_mallows(setup_rank_data(preferences = prefs)),
"Intransitive pairwise comparisons. Please specify an error model."
)
expect_error(
compute_mallows(
data = setup_rank_data(potato_visual),
initial_values = set_initial_values(rho_init = rnorm(20))
),
"rho_init must be a proper permutation"
)
expect_error(
compute_mallows(
data = setup_rank_data(potato_visual),
initial_values = set_initial_values(rho_init = 1:3)
),
"initial value for rho must have one value per item"
)
})
test_that("compute_mallows is platform independent", {
set.seed(1)
mod <- compute_mallows(setup_rank_data(potato_visual))
expect_equal(mod$alpha$value[1998], 10.2019196814125)
dat <- potato_visual
dat[dat > 5] <- NA
mod <- compute_mallows(setup_rank_data(dat))
expect_equal(mod$alpha$value[1998], 7.26333324707436)
})
test_that("compute_mallows rejects empty data", {
expect_error(compute_mallows(
data = setup_rank_data(rankings = matrix(nrow = 0, ncol = 10)),
compute_options = set_compute_options(nmc = 10)
))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.