Nothing
#' @title Sample size determination for replication success based on
#' Bayes factor
#'
#' @description This function computes the standard error required to achieve
#' replication success with a certain probability and based on the Bayes
#' factor under normality. The Bayes factor is oriented so that values above
#' one indicate evidence for the null hypothesis of the effect size being
#' zero, whereas values below one indicate evidence for the hypothesis of
#' the effect size being non-zero (with normal prior assigned to it).
#'
#' @param level Bayes factor level below which replication success is achieved
#' @param dprior Design prior object
#' @param power Desired probability of replication success
#' @param priormean Mean of the normal prior under the alternative. Defaults to
#' \code{0}
#' @param priorvar Variance of the normal prior under the alternative. Defaults
#' to \code{1}
#' @param searchInt Interval for numerical search over replication standard
#' errors
#'
#' @return Returns an object of class \code{"ssdRS"}. See \code{\link{ssd}} for
#' details.
#'
#' @references
#'
#' Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to
#' designing replication studies. arXiv preprint.
#' \doi{10.48550/arXiv.2211.02552}
#'
#' @author Samuel Pawel
#'
#' @examples
#' ## specify design prior
#' to1 <- 0.2
#' so1 <- 0.05
#' dprior <- designPrior(to = to1, so = so1, tau = 0.03)
#' ssdBF01(level = 1/10, dprior = dprior, power = 0.8)
#'
#' @export
ssdBF01 <- function(level, dprior, power, priormean = 0, priorvar = 1,
searchInt = c(.Machine$double.eps^0.5, 2)) {
## input checks
stopifnot(
length(level) == 1,
is.numeric(level),
is.finite(level),
0 < level, level < 1,
class(dprior) == "designPrior",
length(power) == 1,
is.numeric(power),
is.finite(power),
0 < power, power < 1,
level < power,
length(priormean) == 1,
is.numeric(priormean),
is.finite(priormean),
length(priorvar) == 1,
is.numeric(priorvar),
is.finite(priorvar),
0 < priorvar,
length(searchInt) == 2,
is.numeric(searchInt),
all(is.finite(searchInt)),
0 <= searchInt[1], searchInt[1] < searchInt[2]
)
## computing bound of probability of replication success
limP <- porsBF01(level = level, dprior = dprior, sr = .Machine$double.eps,
priormean = priormean, priorvar = priorvar)
if (power > limP) {
warning(paste0("Power not achievable with specified design prior (at most ",
round(limP, 3), ")"))
sr <- NaN
outPow <- NaN
} else {
## computing replication standard error sr
rootFun <- function(sr) {
porsBF01(level = level, dprior = dprior, sr = sr,
priormean = priormean, priorvar = priorvar) - power
}
res <- try(stats::uniroot(f = rootFun, interval = searchInt)$root, silent = TRUE)
if (inherits(res, "try-error")) {
sr <- NaN
outPow <- NaN
warning("Numerical problems, try adjusting searchInt")
} else {
sr <- res
## computing probability of replication success
outPow <- porsBF01(level = level, dprior = dprior, sr = sr,
priormean = priormean, priorvar = priorvar)
}
}
## create output object
out <- list("designPrior" = dprior, "power" = power,
"powerRecomputed" = outPow, "sr" = sr,
"c" = dprior$so^2/sr^2,
type = paste("Bayes factor (in favor of H0) <=", signif(level, 3),
"(numerical computation)"))
class(out) <- "ssdRS"
return(out)
}
#' @title Probability of replication success based on Bayes factor
#'
#' @description This function computes the probability to achieve replication
#' success based on a Bayes factor. The Bayes factor is oriented so that
#' values above one indicate evidence for the null hypothesis of the effect
#' size being zero, whereas values below one indicate evidence for the
#' hypothesis of the effect size being non-zero (with normal prior assigned
#' to it).
#'
#' @param level Bayes factor level below which replication success is achieved
#' @param dprior Design prior object
#' @param sr Replication standard error
#' @param priormean Mean of the normal prior under the alternative. Defaults to
#' \code{0}
#' @param priorvar Variance of the normal prior under the alternative. Defaults
#' to \code{1}
#'
#' @return The probability to achieve replication success
#'
#' @references
#'
#' Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to
#' designing replication studies. arXiv preprint.
#' \doi{10.48550/arXiv.2211.02552}
#'
#' @author Samuel Pawel
#'
#' @examples
#' ## specify design prior
#' to1 <- 2
#' so1 <- 0.05
#' dprior <- designPrior(to = to1, so = so1, tau = 0.03)
#' porsBF01(level = 1/10, dprior = dprior, sr = c(0.05, 0.04))
#'
#' @export
porsBF01 <- function(level, dprior, sr, priormean = 0, priorvar = 1) {
## input checks
stopifnot(
length(level) == 1,
is.numeric(level),
is.finite(level),
0 < level,
class(dprior) == "designPrior",
length(sr) > 0,
is.numeric(sr),
all(is.finite(sr)),
all(0 <= sr),
length(priormean) == 1,
is.numeric(priormean),
is.finite(priormean),
length(priorvar) == 1,
is.numeric(priorvar),
is.finite(priorvar),
0 < priorvar
)
ps <- vapply(X = sr, FUN = function(sr1) {
## compute probability of replication success
g <- priorvar/sr1^2
A <- sr1^2*(1 + 1/g)*(priormean^2/priorvar - 2*log(level) + log(1 + g))
## success region depends on direction of prior mean
sregion <- successRegion(intervals = rbind(c(-Inf, -sqrt(A) - priormean/g),
c(sqrt(A) - priormean/g, Inf)))
p <- pors(sregion = sregion, dprior = dprior, sr = sr1)
return(p)
}, FUN.VALUE = 1)
return(ps)
}
## ## checking some stuff
## BF01a <- function(tr, sr, m, v) {
## stats::dnorm(x = tr, mean = 0, sd = sr) /
## stats::dnorm(x = tr, mean = m, sd = sqrt(v + sr^2))
## }
## BF01b <- function(tr, sr, m, v) {
## sqrt(1 + v/sr^2)*exp(-0.5*((tr + m*sr^2/v)^2*v/sr^2/(sr^2 + v) - m^2/v))
## }
## tr <- 0.1
## sr <- 0.05
## m <- -0.2
## v <- 0.3
## BF01a(tr = tr, sr = sr, m = m, v = v)
## BF01b(tr = tr, sr = sr, m = m, v = v)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.