Nothing
#' @title Sample size determination for replication success based on
#' significance
#'
#' @description This function computes the standard error required to achieve
#' replication success with a certain probability and based on statistical
#' significance of the replication effect estimate.
#'
#' @param level Significance level for the replication effect estimate
#' (one-sided and in the same direction as the original effect estimate)
#' @param dprior Design prior object
#' @param power Desired probability of replication success
#'
#' @return Returns an object of class \code{"ssdRS"}. See \code{\link{ssd}} for
#' details.
#'
#' @references
#'
#' Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to
#' designing replication studies. arXiv preprint.
#' \doi{10.48550/arXiv.2211.02552}
#'
#' @author Samuel Pawel
#'
#' @examples
#' ## specify design prior
#' to1 <- 2
#' so1 <- 0.5
#' dprior <- designPrior(to = to1, so = so1, tau = 0.1)
#' ssdSig(level = 0.025, dprior = dprior, power = 0.9)
#'
#' @export
ssdSig <- function(level, dprior, power) {
## input checks
stopifnot(
length(level) == 1,
is.numeric(level),
is.finite(level),
0 < level, level < 1,
class(dprior) == "designPrior",
length(power) == 1,
is.numeric(power),
is.finite(power),
0 < power, power < 1,
level < power
)
## extracting design prior parameters
tau <- dprior$tau
dpmean <- dprior$dpMean
dpvar <- dprior$dpVar
so <- dprior$so
to <- dprior$to
## computing standard normal quantiles for power calculation
if (sign(to) > 0) {
za <- stats::qnorm(p = 1 - level)
} else {
za <- stats::qnorm(p = level)
}
zb <- stats::qnorm(p = power)
## computing bound of probability of replication success
limP <- porsSig(level = level, dprior = dprior, sr = 0)
if (power > limP) {
warning(paste0("Power not achievable with specified design prior (at most ",
round(limP, 3), ")"))
sr <- NaN
outPow <- NaN
} else {
## computing replication standard error sr analytically
sr <- (dpmean*za - zb*sqrt((za^2 - zb^2)*(tau^2 + dpvar) +
dpmean^2))/((za^2 - zb^2))
## computing probability of replication success
outPow <- porsSig(level = level, dprior = dprior, sr = sr)
}
## create output object
out <- list("designPrior" = dprior, "power" = power,
"powerRecomputed" = outPow, "sr" = sr,
"c" = so^2/sr^2,
type = paste("replication p-value <=", signif(level, 3),
"(exact computation)"))
class(out) <- "ssdRS"
return(out)
}
#' @title Probability of replication success based on significance
#'
#' @description This function computes the probability to achieve replication
#' success on statistical significance of the replication effect estimate.
#'
#' @param level Significance level for p-value of the replication effect
#' estimate (one-sided and in the same direction as the original effect
#' estimate)
#' @param dprior Design prior object
#' @param sr Replication standard error
#'
#' @return The probability to achieve replication success
#'
#' @references
#'
#' Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to
#' designing replication studies. arXiv preprint.
#' \doi{10.48550/arXiv.2211.02552}
#'
#' @author Samuel Pawel
#'
#' @examples
#' ## specify design prior
#' to1 <- 2
#' so1 <- 1
#' dprior <- designPrior(to = to1, so = so1, tau = 0.1)
#' porsSig(level = 0.025, dprior = dprior, sr = c(0.5, 0.3))
#'
#' @export
porsSig <- function(level, dprior, sr) {
## input checks
stopifnot(
length(level) == 1,
is.numeric(level),
is.finite(level),
0 < level, level < 1,
class(dprior) == "designPrior",
length(sr) > 0,
is.numeric(sr),
all(is.finite(sr)),
all(0 <= sr)
)
ps <- vapply(X = sr, FUN = function(sr1) {
## compute probability of replication success
sregion <- successRegionSig(sr = sr1, to = dprior$to, tau = 0,
nsites = 1, level = level)
p <- pors(sregion = sregion, dprior = dprior, sr = sr1)
return(p)
}, FUN.VALUE = 1)
return(ps)
}
#' @title Success region based on significance
#'
#' @description This function returns the success region for the (meta-analytic)
#' replication effect estimate to achieve significance
#'
#' @param sr Replication standard error
#' @param to Original effect estimate
#' @param tau Heterogeneity standard deviation used in the calculation of the
#' meta-analytic replication effect estimate and its standard error.
#' Defaults to \code{0} (fixed effects analysis)
#' @param nsites nsites Number of sites, defaults to \code{1}. The effect
#' estimates from all sites are assumed to have the same standard error
#' \code{sr}
#' @param level Significance level for p-value of the (average) replication
#' effect estimate (one-sided and in the same direction as the original
#' effect estimate)
#'
#' @return An object of class \code{"successRegion"}. See
#' \code{\link{successRegion}} for details.
#'
#' @references
#'
#' Pawel, S., Consonni, G., and Held, L. (2022). Bayesian approaches to
#' designing replication studies. arXiv preprint.
#' \doi{10.48550/arXiv.2211.02552}
#'
#' @author Samuel Pawel
#'
#' @examples
#' successRegionSig(sr = 0.05, to = 0.2, tau = 0.01, nsites = 3, level = 0.025)
#'
#' @export
successRegionSig <- function(sr, to, tau = 0, nsites = 1, level) {
## input checks
stopifnot(
length(sr) == 1,
is.numeric(sr),
is.finite(sr),
0 <= sr,
length(to) == 1,
is.numeric(sr),
is.finite(sr),
length(tau) == 1,
is.numeric(tau),
is.finite(tau),
0 <= tau,
length(nsites) == 1,
is.numeric(nsites),
is.finite(nsites),
nsites > 0,
length(level) == 1,
is.numeric(level),
is.finite(level),
0 < level, level < 1
)
## compute standard error of weighted average
srMA <- 1/sqrt(nsites/(sr^2 + tau^2))
## success region depends on direction of original estimate
if (sign(to) >= 0) {
sregion <- successRegion(intervals = cbind(stats::qnorm(p = 1 - level)*srMA, Inf))
} else {
sregion <- successRegion(cbind(-Inf, stats::qnorm(p = level)*srMA))
}
return(sregion)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.