Description Usage Arguments Value Author(s) References Examples
View source: R/result_est_MAP.R
Using the object of S5, the maximum a posteriori (MAP) estimator and Bayesian Model Averaged (BMA) estimators of the regression coefficients are provided.
1 | result_est_MAP(res,X,y,obj_fun,verbose = TRUE)
|
res |
an object of the 'S5' function. |
X |
the covariates. |
y |
the response varaible. |
obj_fun |
the negative log (unnormalized) posterior density when a model is given. |
verbose |
logical; default is TRUE. |
intercept.MAP |
the MAP estimator of the intercept. |
beta.MAP |
the MAP estimator of the regression coefficients. |
sig.MAP |
the MAP estimator of the regression variance. |
intercept.BMA |
the Baeysian model averaged estimator of the intercept. |
beta.BMA |
the Bayesian model averaged estimator of the regression coefficients. |
Shin Minsuk and Ruoxuan Tian
Shin, M., Bhattacharya, A., Johnson V. E. (2018) A Scalable Bayesian Variable Selection Using Nonlocal Prior Densities in Ultrahigh-dimensional Settings, Statistica Sinica.
Hans, C., Dobra, A., and West, M. (2007). Shotgun stochastic search for large p regression. Journal of the American Statistical Association, 102, 507-516.
Nikooienejad,A., Wang, W., and Johnson V.E. (2016). Bayesian variable selection for binary outcomes in high dimensional genomic studies using non-local priors. Bioinformatics, 32(9), 1338-45.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | p=5000
n = 100
indx.beta = 1:5
xd0 = rep(0,p);xd0[indx.beta]=1
bt0 = rep(0,p);
bt0[1:5]=c(1,1.25,1.5,1.75,2)*sample(c(1,-1),5,replace=TRUE)
xd=xd0
bt=bt0
X = matrix(rnorm(n*p),n,p)
y = X%*%bt0 + rnorm(n)*sqrt(1.5)
X = scale(X)
y = y-mean(y)
y = as.vector(y)
### piMoM
#C0 = 2 # the number of repetitions of S5 algorithms to explore the model space
#tuning = 10 # tuning parameter
#tuning = hyper_par(type="pimom",X,y,thre = p^-0.5)
#print(tuning)
#ind_fun = ind_fun_pimom # choose the prior on the regression coefficients (pimom in this case)
#model = Bernoulli_Uniform # choose the model prior
#tem = seq(0.4,1,length.out=20)^2 # the sequence of the temperatures
#fit_pimom = S5(X,y,ind_fun=ind_fun,model = model,tuning=tuning,tem=tem,C0=C0)
#fit_pimom$GAM # the searched models by S5
#fit_pimom$OBJ # the corresponding log (unnormalized) posterior probability
#res_pimom = result(fit_pimom)
#est.MAP = result_est_MAP(res_pimom,X,y,obj_fun_pimom,verbose=TRUE)
#plot(est.MAP$beta.MAP,est.MAP$beta.BMA)
#abline(0,1,col="red")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.