Nothing
## ----global_options, include=FALSE--------------------------------------------
knitr::opts_chunk$set(fig.width=5, fig.height=5, warning=FALSE, cache = F)
## ---- echo = F, message = F---------------------------------------------------
set.seed(123)
## ---- eval = F----------------------------------------------------------------
# runMyModel(par)
## ---- eval = F----------------------------------------------------------------
# dyn.load(model)
#
# runMyModel(par){
# out = # model call here
# # process out
# return(out)
# }
## ---- eval = F----------------------------------------------------------------
# runMyModel(par){
#
# # Create here a string with what you would write to call the model from the command line
# systemCall <- paste("model.exe", par[1], par[2])
#
# out = system(systemCall, intern = TRUE) # intern indicates whether to capture the output of the command as an R character vector
#
# # write here to convert out in the apprpriate R classes
#
# }
## ---- eval = F----------------------------------------------------------------
# runMyModel(par, returnData = NULL){
#
# writeParameters(par)
#
# system("Model.exe")
#
# if(! is.null(returnData)) return(readData(returnData)) # The readData function will be defined later
#
# }
#
# writeParameters(par){
#
# # e.g.
# # read template parameter fil
# # replace strings in template file
# # write parameter file
# }
## ---- eval = F----------------------------------------------------------------
# setUpModel <- function(parameterTemplate, site, localConditions){
#
# # create the runModel, readData functions (see later) here
#
# return(list(runModel, readData))
#
# }
## ---- eval = F----------------------------------------------------------------
# getData(type = X){
#
# read.csv(xxx)
#
# # do some transformation
#
# # return data in desidered format
# }
## ---- eval = F----------------------------------------------------------------
# par = c(1,2,3,4 ..)
#
# runMyModel(par)
#
# output <- getData(type = DesiredType)
#
# plot(output)
## -----------------------------------------------------------------------------
mymodel<-function(x){
output<-0.2*x+0.1^x
return(output)
}
## ---- eval = F----------------------------------------------------------------
#
# library(parallel)
# cl <- makeCluster(2)
#
# runParallel<- function(parList){
# parSapply(cl, parList, mymodel)
# }
#
# runParallel(c(1,2))
## ---- eval = F----------------------------------------------------------------
# library(BayesianTools)
# parModel <- generateParallelExecuter(mymodel)
## -----------------------------------------------------------------------------
library(BayesianTools)
ll <- generateTestDensityMultiNormal(sigma = "no correlation")
bayesianSetup <- createBayesianSetup(likelihood = ll, lower = rep(-10, 3), upper = rep(10, 3))
settings = list(iterations = 200)
# run the several MCMCs chains either in seperate R sessions, or via R parallel packages
out1 <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)
out2 <- runMCMC(bayesianSetup = bayesianSetup, sampler = "DEzs", settings = settings)
res <- createMcmcSamplerList(list(out1, out2))
plot(res)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.