inst/examples/mcmcRun.R

## Generate a test likelihood function. 
ll <- generateTestDensityMultiNormal(sigma = "no correlation")

## Create a BayesianSetup object from the likelihood 
## is the recommended way of using the runMCMC() function.
bayesianSetup <- createBayesianSetup(likelihood = ll, lower = rep(-10, 3), upper = rep(10, 3))

## Finally we can run the sampler and have a look
settings = list(iterations = 1000, adapt = FALSE)
out <- runMCMC(bayesianSetup = bayesianSetup, sampler = "Metropolis", settings = settings)

## out is of class bayesianOutput. There are various standard functions 
# implemented for this output

plot(out)
correlationPlot(out)
marginalPlot(out)
summary(out)

## additionally, you can return the sample as a coda object, and make use of the coda functions
# for plotting and analysis

codaObject = getSample(out, start = 500, coda = TRUE)

Try the BayesianTools package in your browser

Any scripts or data that you put into this service are public.

BayesianTools documentation built on Dec. 10, 2019, 1:08 a.m.