Nothing
# Testing bad inputs to functions
## BranchGLM
test_that("BranchGLM bad inputs", {
library(BranchGLM)
set.seed(8621)
x <- sapply(rep(0, 10), rnorm, n = 1000, simplify = TRUE)
x <- cbind(1, x)
beta <- rnorm(11, sd = 0.1)
y <- exp(x %*% beta)
Data <- cbind(y, x[,-1]) |>
as.data.frame()
colnames(Data)[1] <- "y"
yBin <- (y >= median(y))
DataBin <- cbind(yBin, x[,-1]) |>
as.data.frame()
colnames(DataBin)[1] <- "y"
### formula
expect_error(BranchGLM(1, data = Data, family = "gamma", link = "log"))
expect_error(BranchGLM(1:2, data = Data, family = "gamma", link = "log"))
expect_error(BranchGLM(~ ., data = Data, family = "gamma", link = "log"))
expect_error(BranchGLM(y ~ apple, data = Data, family = "gamma", link = "log"))
### data
expect_error(BranchGLM(y ~ ., data = cbind(y, x[, 1]), family = "gamma", link = "log"))
### family and link
expect_error(BranchGLM(y ~ ., data = Data, family = 1:2, link = "log"))
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = 1:2))
expect_error(BranchGLM(y ~ ., data = Data, family = "GamMA", link = "log"), NA)
expect_error(BranchGLM(y ~ ., data = Data, family = "GamMA", link = "LOg"), NA)
expect_error(BranchGLM(y ~ ., data = Data, family = gaussian(link = "sqrt")), NA)
expect_error(BranchGLM(y ~ ., data = Data, family = gaussian(link = "inverse")), NA)
expect_error(BranchGLM(y ~ ., data = Data, family = gaussian(link = "log")), NA)
expect_error(BranchGLM(y ~ ., data = Data, family = gaussian()), NA)
expect_error(BranchGLM(y ~ ., data = Data, family = Gamma(link = "sqrt")), NA)
expect_error(BranchGLM(y ~ ., data = Data, family = Gamma()), NA)
expect_error(BranchGLM(y ~ ., data = Data, family = Gamma(link = "identity"), fit = FALSE), NA)
expect_error(BranchGLM(y ~ ., data = Data, family = Gamma(link = "log")), NA)
expect_error(BranchGLM(y ~ ., data = DataBin, family = binomial(link = "log"), fit = FALSE), NA)
expect_error(BranchGLM(y ~ ., data = DataBin, family = binomial(), fit = FALSE), NA)
expect_error(BranchGLM(y ~ ., data = DataBin, family = binomial(link = "probit")), NA)
expect_error(BranchGLM(y ~ ., data = DataBin, family = binomial(link = "cloglog"), fit = FALSE), NA)
expect_error(BranchGLM(I(floor(y)) ~ ., data = Data, family = poisson()), NA)
expect_error(BranchGLM(I(floor(y)) ~ ., data = Data, family = poisson(link = "sqrt")), NA)
expect_error(BranchGLM(I(floor(y)) ~ ., data = Data, family = poisson(link = "identity"), fit = FALSE), NA)
### fitting parameters
#### tol
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", tol = "apple"))
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", tol = 1:2))
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", tol = -1))
#### grads
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", grads = "apple"))
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", grads = 1:2))
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", grads = -1))
#### maxit
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", maxit = "apple"))
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", maxit = 1:2))
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", maxit = -1))
#### nthreads
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", nthreads = "apple"))
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", nthreads = 1:2))
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", nthreads = -1))
#### parallel
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", nthreads = "apple"))
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", nthreads = 1:2))
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", nthreads = -1))
#### init
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", init = "apple"))
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log",
init = rep(NA_real_, 11)))
#### fit
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", fit = "apple"))
#### keepData
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", keepData = "apple"))
#### keepY
expect_error(BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", keepY = "apple"))
## BranchGLM.fit
### x and y
expect_error(BranchGLM.fit(NA, y, family = "gamma", link = "log"))
expect_error(BranchGLM.fit(x, as.factor(round(y)), family = "gamma", link = "log"))
expect_error(BranchGLM.fit(x, y[1:20], family = "gamma", link = "log"))
### offset
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", offset = x[1:20, 1]))
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log",
offset = as.factor(round(x[, 1]))))
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", offset = "apple"))
### family and link
expect_error(BranchGLM.fit(x, y, family = 1:2, link = "log"))
expect_error(BranchGLM.fit(x, y, family = "gamma", link = 1:2))
expect_error(BranchGLM.fit(x, y, family = "GamMA", link = "log"), NA)
expect_error(BranchGLM.fit(x, y, family = "GamMA", link = "LOg"), NA)
### fitting parameters
#### tol
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", tol = "apple"))
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", tol = 1:2))
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", tol = -1))
#### grads
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", grads = "apple"))
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", grads = 1:2))
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", grads = -1))
#### maxit
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", maxit = "apple"))
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", maxit = 1:2))
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", maxit = -1))
#### nthreads
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", nthreads = "apple"))
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", nthreads = 1:2))
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", nthreads = -1))
#### parallel
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", nthreads = "apple"))
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", nthreads = 1:2))
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", nthreads = -1))
#### init
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log", init = "apple"))
expect_error(BranchGLM.fit(x, y, family = "gamma", link = "log",
init = rep(NA_real_, 11)))
### plot
nofit <- BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", fit = FALSE)
noy <- BranchGLM(y ~ ., data = Data, family = "gamma", link = "log", keepY = FALSE)
fit <- BranchGLM(y ~ ., data = Data, family = "gamma", link = "log")
expect_error(plot(nofit))
expect_error(plot(noy))
expect_error(plot(fit), NA)
})
## predict.BranchGLM
test_that("predict.BranchGLM bad inputs", {
library(BranchGLM)
set.seed(8621)
x <- sapply(rep(0, 10), rnorm, n = 1000, simplify = TRUE)
x <- cbind(1, x)
beta <- rnorm(11, sd = 0.1)
y <- exp(x %*% beta)
Data <- cbind(y, x[,-1]) |>
as.data.frame()
colnames(Data)[1] <- "y"
Fit <- BranchGLM(y ~ ., data = Data, family = "gaussian", link = "identity",
offset = rep(0.01, 1000))
### newdata and offset
expect_error(predict(Fit, newdata = as.matrix(Data)))
expect_warning(predict(Fit, newdata = Data))
expect_error(predict(Fit, newdata = Data, offset = rep(0.01, 100)))
### type
expect_error(predict(Fit, type = "apple"))
expect_error(predict(Fit, type = 1:2))
expect_error(predict(Fit, newdata = Data, type = "apple"))
expect_error(predict(Fit, newdata = Data, type = 1:2))
### na.action
expect_error(predict(Fit, na.action = "helper"))
expect_error(predict(Fit, na.action = 1:2))
})
## confidence intervals
test_that("confidence intervals bad inputs", {
library(BranchGLM)
set.seed(8621)
x <- sapply(rep(0, 10), rnorm, n = 1000, simplify = TRUE)
x <- cbind(1, x)
beta <- rnorm(11, sd = 0.1)
y <- exp(x %*% beta)
Data <- cbind(y, x[,-1]) |>
as.data.frame()
colnames(Data)[1] <- "y"
Fit <- BranchGLM(y ~ ., data = Data, family = "gaussian", link = "identity",
offset = rep(0.01, 1000))
CI <- confint(Fit)
### confint.BranchGLM
#### parm
expect_error(confint(Fit, parm = NA))
expect_error(confint(Fit, parm = "apple"))
expect_error(confint(Fit, parm = c(1, 1e6)))
#### level
expect_error(confint(Fit, level = -1))
expect_error(confint(Fit, level = c(0.95, 0.99)))
expect_error(confint(Fit, level = "apple"))
#### nthreads
expect_error(confint(Fit, nthreads = -1))
expect_error(confint(Fit, nthreads = 1:2))
expect_error(confint(Fit, nthreads = "apple"))
#### parallel
expect_error(confint(Fit, parallel = 1:2))
expect_error(confint(Fit, parallel = "apple"))
### plot.BranchGLMCIs
#### which
expect_error(plot(CI, which = "apple"))
expect_error(plot(CI, which = 1:100))
#### mary
expect_error(plot(CI, mary = -1))
expect_error(plot(CI, mary = "apple"))
expect_error(plot(CI, mary = 1:2))
### PlotCI
points <- CI$MLE
#### CIs and points
expect_error(plotCI(t(CI$CIs), points = points))
expect_error(plotCI("apple", points = points))
expect_error(plotCI(CI$CIs[1:10, ], points = points))
expect_error(plotCI(CI$CIs, points = points[1:2]))
#### las
expect_error(plotCI(CI$CIs, points = points, las = 100))
expect_error(plotCI(CI$CIs, points = points, las = 1:2))
expect_error(suppressWarnings(plotCI(CI$CIs, points = points, las = "apple")))
#### cex.y
expect_error(plotCI(CI$CIs, points, cex.y = -1))
expect_error(suppressWarnings(plotCI(CI$CIs, points, cex.y = "apple")))
expect_error(plotCI(CI$CIs, points, cex.y = 1:2))
#### decreasing
expect_error(plotCI(CI$CIs, points, decreasing = "apple"))
expect_error(plotCI(CI$CIs, points, decreasing = c(TRUE, FALSE)))
expect_error(plotCI(CI$CIs, points, decreasing = Data))
})
## VariableSelection
test_that("VariableSelection bad inputs", {
library(BranchGLM)
set.seed(8621)
x <- sapply(rep(0, 10), rnorm, n = 1000, simplify = TRUE)
x <- cbind(1, x)
beta <- rnorm(11, sd = 0.1)
y <- exp(x %*% beta)
Data <- cbind(y, x[,-1]) |>
as.data.frame()
colnames(Data)[1] <- "y"
Fit <- BranchGLM(y ~ ., data = Data, family = "gaussian", link = "identity")
### keep
expect_error(VariableSelection(Fit, keep = c("apple", "diag", 1)))
expect_error(VariableSelection(Fit, keep = NA_character_))
### keepintercept
expect_error(VariableSelection(Fit, keepintercept = c("apple", "diag", 1)))
expect_error(VariableSelection(Fit, keepintercept = NA_character_))
### metric
expect_error(VariableSelection(Fit, metric = c("AIC", "BIC")))
expect_error(VariableSelection(Fit, metric = 3))
### type
expect_error(VariableSelection(Fit, type = c("AIC", "BIC")))
expect_error(VariableSelection(Fit, type = NA_character_))
### bestmodels
expect_error(VariableSelection(Fit, bestmodels = 0))
expect_error(VariableSelection(Fit, bestmodels = 1:2))
expect_error(VariableSelection(Fit, bestmodels = "apple"))
### type
expect_error(VariableSelection(Fit, cutoff = -1))
expect_error(VariableSelection(Fit, cutoff = 1:2))
expect_error(VariableSelection(Fit, cutoff = "apple"))
expect_error(VariableSelection(Fit, cutoff = 2, bestmodels = 10))
### nthreads
expect_error(VariableSelection(Fit, nthreads = -1))
expect_error(VariableSelection(Fit, nthreads = 1:2))
expect_error(VariableSelection(Fit, nthreads = "apple"))
### parallel
expect_error(VariableSelection(Fit, parallel = 1:2))
expect_error(VariableSelection(Fit, parallel = "apple"))
### maxsize
#### maxsize now defunct
# expect_error(VariableSelection(Fit, maxsize = -1))
# expect_error(VariableSelection(Fit, maxsize = 1:2))
# expect_error(VariableSelection(Fit, maxsize = "apple"))
### showprogress
expect_error(VariableSelection(Fit, showprogress = -1))
expect_error(VariableSelection(Fit, showprogress = 1:2))
expect_error(VariableSelection(Fit, showprogress = "apple"))
})
## BranchGLMVS methods
test_that("BranchGLMVS methods bad inputs", {
library(BranchGLM)
set.seed(8621)
x <- sapply(rep(0, 10), rnorm, n = 1000, simplify = TRUE)
x <- cbind(1, x)
beta <- rnorm(11, sd = 0.1)
y <- exp(x %*% beta)
Data <- cbind(y, x[,-1]) |>
as.data.frame()
colnames(Data)[1] <- "y"
Fit <- BranchGLM(y ~ ., data = Data, family = "gaussian", link = "identity",
offset = rep(0.01, 1000))
VS <- VariableSelection(Fit)
### predict.BranchGLMVS
expect_error(predict(VS, newdata = as.matrix(Data)))
expect_warning(predict(VS, newdata = Data))
expect_error(predict(VS, newdata = Data, offset = rep(0.01, 100)))
expect_error(predict(VS, which = 0))
expect_error(predict(VS, which = 100))
expect_error(predict(VS, which = 1:2))
expect_error(predict(VS, which = "apple"))
### coef.BranchGLMVS
expect_error(coef(VS, which = 0))
expect_error(coef(VS, which = 100))
expect_error(coef(VS, which = "apple"))
### plot.BranchGLMVS
#### ptype
expect_error(plot(VS, ptype = "apple"))
expect_error(plot(VS, ptype = 1))
expect_error(plot(VS, ptype = c("variables", "variables")))
#### cols
expect_error(plot(VS, cols = 1:3, ptype = "variables"))
expect_error(plot(VS, cols = "red", ptype = "variables"))
#### marnames
expect_error(plot(VS, marnames = -1))
expect_error(plot(VS, marnames = "apple"))
expect_error(plot(VS, marnames = 1:2))
#### cex
expect_error(plot(VS, cex.axis = -1))
expect_error(suppressWarnings(plot(VS, cex.axis = "apple")))
expect_error(plot(VS, cex.axis = 1:2))
expect_error(plot(VS, cex.names = -1))
expect_error(suppressWarnings(plot(VS, cex.names = "apple")))
expect_error(plot(VS, cex.names = 1:2))
expect_error(plot(VS, cex.lab = -1))
expect_error(suppressWarnings(plot(VS, cex.lab = "apple")))
expect_error(plot(VS, cex.lab = 1:2))
expect_error(plot(VS, cex.legend = -1))
expect_error(suppressWarnings(plot(VS, cex.legend = "apple")))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.