Description Usage Arguments Author(s) Examples
This function implements the idea of Bayesian Lasso tobit quantile regression using a likelihood function that is based on the asymmetric Laplace distribution (Rahim, 2016). The asymmetric Laplace error distribution is written as a scale mixture of normal distributions as in Reed and Yu (2009). This function implements the Bayesian lasso for linear tobit quantile regression models by assigning scale mixture of normal (SMN) priors on the parameters and independent exponential priors on their variances. A Gibbs sampling algorithm for the Bayesian Lasso tobit quantile regression is constructed by sampling the parameters from their full conditional distributions.
1  BLtqr(x,y, tau = 0.5, left = 0, runs = 11000, burn = 1000, thin=1)

x 

y 

tau 

left 

runs 

burn 

thin 

Rahim Alhamzawi
1 2 3 4 5 6 7 8 9 10 11 12 13 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.