Nothing
### transform.R ---
##----------------------------------------------------------------------
## Author: Brice Ozenne
## Created: feb 13 2025 (11:44)
## Version:
## Last-Updated: feb 18 2025 (15:47)
## By: Brice Ozenne
## Update #: 25
##----------------------------------------------------------------------
##
### Commentary:
##
### Change Log:
##----------------------------------------------------------------------
##
### Code:
library(BuyseTest)
library(data.table)
library(survival)
## * prodige
argsSurv <- list(name = c("OS","PFS"),
name.censoring = c("statusOS","statusPFS"),
scale.C = c(9.995655, 4.265128),
scale.T = c(13.16543, 7.884477),
shape.C = c(1.28993, 1.391015),
shape.T = c(1.575269, 1.327461),
scale.censoring.C = c(34.30562, 20.748712),
scale.censoring.T = c(27.88519, 17.484281),
shape.censoring.C = c(1.369449, 1.463876),
shape.censoring.T = c(1.490881, 1.835526))
argsTox <- list(name = "toxicity",
p.C = c(16.09, 15.42, 33.26, 26.18, 8.38, 0.67)/100,
p.T = c(8.21, 13.09, 31.29, 30.87, 12.05, 4.49)/100,
rho.T = 1, rho.C = 1)
## c(sum(argsTox$p.C),sum(argsTox$p.C[3:6]))
## c(sum(argsTox$p.T),sum(argsTox$p.T[3:6]))
set.seed(1)
prodige <- simBuyseTest(n.T = 421, n.C = 402,
argsBin = argsTox,
argsCont = NULL,
argsTTE = argsSurv,
level.strata = c("M","F"), names.strata = "sex")[, c("OS") := .(OS/2)]
## max follow-up: 36 months
prodige[PFS > 36, c("PFS","statusPFS") := .(36,0)]
prodige[OS > 36, c("OS","statusOS") := .(36,0)]
## if censored PFS after OS then PFS is censored at OS time
prodige[PFS > OS & statusPFS == 0,PFS := OS]
## if PFS after OS then PFS occured during the last month
prodige[PFS > OS & statusPFS == 1, c("PFS","statusPFS") := .(OS,0)]
## prodige[PFS > OS]
prodige[, OS := pmax(round(OS,4),0.0001)]
prodige[, PFS := round(PFS,4)]
## toxicity
prodige[, toxicity := as.numeric(toxicity)]
## any(duplicated(setdiff(prodige$OS,36)))
## any(duplicated(setdiff(prodige$PFS,36)))
## library(prodlim)
## plot(prodlim(Hist(OS,statusOS)~treatment, data = prodige))
## plot(prodlim(Hist(PFS,statusPFS)~treatment, data = prodige))
## coxph(Surv(OS, statusOS) ~ treatment, data = prodige)
## model.tables(BuyseTest(treatment ~ tte(OS, statusOS), data = prodige, trace = FALSE))
## model.tables(BuyseTest(treatment ~ cont(toxicity, operator = "<0"), data = prodige, trace = FALSE))
## exact2x2::uncondExact2x2(n1 = 402, x1 = sum(prodige[treatment == "C",toxicity>=3]), n2 = 421, x2 = sum(prodige[treatment == "T",toxicity>=3]))
save(prodige, file = "data/prodige.rda")
## write.csv(prodige, "../tutorial-DagStat2025-GPC/data/prodige.csv", row.names = FALSE)
## * CHARM
CHARM <- read.csv("inst/source/CHARM_sim.csv", header = TRUE, na.string = ".")
CHARM <- cbind(id = 1:NROW(CHARM), CHARM)
## CHARM[CHARM$statusHospitalization == 1 & CHARM$statusMortality == 1,]
## any(CHARM$Hospitalization > CHARM$Mortality)
## range(CHARM$Composite - pmin(CHARM$Mortality,CHARM$Hospitalization))
## range(CHARM$statusComposite - pmax(CHARM$statusMortality,CHARM$statusHospitalization))
save(CHARM, file = "data/CHARM.rda")
## write.csv(CHARM, "../tutorial-DagStat2025-GPC/data/CHARM.csv", row.names = FALSE)
## * EB
EB <- read.csv("inst/source/EB.csv", header = TRUE, na.string = c(".","NA"))
save(EB, file = "data/EB.rda")
## write.csv(EB, "../tutorial-DagStat2025-GPC/data/EB.csv", row.names = FALSE)
##----------------------------------------------------------------------
### transform.R ends here
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.