Nothing
loaddata <- function() {
# prepare sample data:
data("cookfarm")
dat <- aggregate(cookfarm[,c("VW","Easting","Northing")],by=list(as.character(cookfarm$SOURCEID)),mean)
pts <- sf::st_as_sf(dat,coords=c("Easting","Northing"))
pts$ID <- 1:nrow(pts)
set.seed(100)
pts <- pts[1:30,]
studyArea <- terra::rast(system.file("extdata","predictors_2012-03-25.tif",package="CAST"))[[1:8]]
trainDat <- terra::extract(studyArea,pts,na.rm=FALSE)
trainDat <- merge(trainDat,pts,by.x="ID",by.y="ID")
# train a model:
set.seed(100)
variables <- c("DEM","NDRE.Sd","TWI")
model <- caret::train(trainDat[,which(names(trainDat)%in%variables)],
trainDat$VW, method="rf", importance=TRUE, tuneLength=1,
trControl=caret::trainControl(method="cv",number=5,savePredictions=T))
data <- list(
studyArea = studyArea,
trainDat = trainDat,
variables = variables,
model = model
)
return(data)
}
test_that("trainDI works in default for a trained model", {
skip_if_not_installed("randomForest")
dat <- loaddata()
#...then calculate the DI of the trained model:
DI <- trainDI(model=dat$model, verbose = F)
#test threshold:
expect_equal(as.numeric(round(DI$threshold,5)), 0.38986)
# test trainDI
expect_equal(DI$trainDI, c(0.09043580, 0.14046341, 0.16584582, 0.57617177, 0.26840303,
0.14353894, 0.19768329, 0.24022059, 0.06832037, 0.29150668,
0.18471625, 0.57617177, 0.12344463, 0.09043580, 0.14353894,
0.26896008, 0.22713731, 0.24022059, 0.20388725, 0.06832037,
0.23604264, 0.20388725, 0.91513568, 0.09558666, 0.14046341,
0.16214832, 0.37107762, 0.16214832, 0.18471625, 0.12344463))
# test summary statistics of the DI
expect_equal(as.numeric(colMeans(DI$train)),
c(795.4426351,4.0277978,0.2577245))
})
test_that("trainDI (with LPD = TRUE) works in default for a trained model", {
skip_if_not_installed("randomForest")
dat <- loaddata()
#...then calculate the DI of the trained model:
DI <- trainDI(model=dat$model, LPD = TRUE, verbose = F)
#test threshold:
expect_equal(as.numeric(round(DI$threshold,5)), 0.38986)
#test trainLPD
expect_identical(DI$trainLPD, as.integer(c(3, 4, 6, 0, 7,
6, 2, 1, 5, 3,
4, 0, 1, 2, 6,
5, 4, 4, 5, 7,
3, 4, 0, 2, 3,
6, 1, 7, 3, 2)))
# test summary statistics of the DI
expect_equal(as.numeric(colMeans(DI$train)),
c(795.4426351,4.0277978,0.2577245))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.