Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE,fig.width=6.2, fig.height=3.4)
## ----message = FALSE, warning=FALSE-------------------------------------------
library(CAST)
library(caret)
library(terra)
library(sf)
library(rnaturalearth)
library(ggplot2)
library(geodata)
## ----message = FALSE, warning=FALSE-------------------------------------------
seed <- 10 # random realization
samplesize <- 300 # how many samples will be used?
nparents <- 20 #For clustered samples: How many clusters?
radius <- 500000 # For clustered samples: What is the radius of a cluster?
## ----message = FALSE, warning=FALSE-------------------------------------------
ee <- st_crs("+proj=eqearth")
co <- ne_countries(returnclass = "sf")
co.ee <- st_transform(co, ee)
## ----message = FALSE, warning=FALSE, results='hide'---------------------------
sf_use_s2(FALSE)
set.seed(seed)
pts_random <- st_sample(co.ee, samplesize)
### See points on the map:
ggplot() + geom_sf(data = co.ee, fill="#00BFC4",col="#00BFC4") +
geom_sf(data = pts_random, color = "#F8766D",size=0.5, shape=3) +
guides(fill = "none", col = "none") +
labs(x = NULL, y = NULL)
## ----message = FALSE, warning=FALSE, results='hide'---------------------------
set.seed(seed)
sf_use_s2(FALSE)
pts_clustered <- clustered_sample(co.ee, samplesize, nparents, radius)
ggplot() + geom_sf(data = co.ee, fill="#00BFC4",col="#00BFC4") +
geom_sf(data = pts_clustered, color = "#F8766D",size=0.5, shape=3) +
guides(fill = "none", col = "none") +
labs(x = NULL, y = NULL)
## ----message = FALSE, warning=FALSE, results='hide'---------------------------
dist_random <- geodist(pts_random,co.ee,
sampling="Fibonacci")
dist_clstr <- geodist(pts_clustered,co.ee,
sampling="Fibonacci")
plot(dist_random, unit = "km")+scale_x_log10(labels=round)+ggtitle("Randomly distributed reference data")
plot(dist_clstr, unit = "km")+scale_x_log10(labels=round)+ggtitle("Clustered reference data")
## ----message = FALSE, warning=FALSE, results='hide'---------------------------
randomfolds <- caret::createFolds(1:nrow(pts_clustered))
## ----message = FALSE, warning=FALSE, results='hide',echo=FALSE----------------
for (i in 1:nrow(pts_clustered)){
pts_clustered$randomCV[i] <- which(unlist(lapply(randomfolds,function(x){sum(x%in%i)}))==1)
}
ggplot() + geom_sf(data = co.ee, fill="#00BFC4",col="#00BFC4") +
geom_sf(data = pts_clustered, color = rainbow(max(pts_clustered$randomCV))[pts_clustered$randomCV],size=0.5, shape=3) +
guides(fill = FALSE, col = FALSE) +
labs(x = NULL, y = NULL)+ggtitle("random fold membership shown by color")
## ----message = FALSE, warning=FALSE, results='hide'---------------------------
dist_clstr <- geodist(pts_clustered,co.ee,
sampling="Fibonacci",
cvfolds= randomfolds)
plot(dist_clstr, unit = "km")+scale_x_log10(labels=round)
## ----message = FALSE, warning=FALSE, results='hide'---------------------------
spatialfolds <- CreateSpacetimeFolds(pts_clustered,spacevar="parent",k=length(unique(pts_clustered$parent)))
## ----message = FALSE, warning=FALSE, results='hide',echo=FALSE----------------
ggplot() + geom_sf(data = co.ee, fill="#00BFC4",col="#00BFC4") +
geom_sf(data = pts_clustered, color = rainbow(max(pts_clustered$parent))[pts_clustered$parent],size=0.5, shape=3) +
guides(fill = FALSE, col = FALSE) +
labs(x = NULL, y = NULL)+ ggtitle("spatial fold membership by color")
## ----message = FALSE, warning=FALSE, results='hide'---------------------------
dist_clstr <- geodist(pts_clustered,co.ee,
sampling="Fibonacci",
cvfolds= spatialfolds$indexOut)
plot(dist_clstr, unit = "km")+scale_x_log10(labels=round)
## ----message = FALSE, warning=FALSE, results='hide'---------------------------
# create a spatial CV for the randomly distributed data. Here:
# "leave region-out-CV"
sf_use_s2(FALSE)
pts_random_co <- st_join(st_as_sf(pts_random),co.ee)
ggplot() + geom_sf(data = co.ee, fill="#00BFC4",col="#00BFC4") +
geom_sf(data = pts_random_co, aes(color=subregion),size=0.5, shape=3) +
scale_color_manual(values=rainbow(length(unique(pts_random_co$subregion))))+
guides(fill = FALSE, col = FALSE) +
labs(x = NULL, y = NULL)+ ggtitle("spatial fold membership by color")
## ----message = FALSE, warning=FALSE, results='hide'---------------------------
spfolds_rand <- CreateSpacetimeFolds(pts_random_co,spacevar = "subregion",
k=length(unique(pts_random_co$subregion)))
dist_rand_sp <- geodist(pts_random_co,co.ee,
sampling="Fibonacci",
cvfolds= spfolds_rand$indexOut)
plot(dist_rand_sp, unit = "km")+scale_x_log10(labels=round)
## ----message = FALSE, warning=FALSE, results='hide'---------------------------
nndmfolds_clstr <- nndm(pts_clustered, modeldomain=co.ee, samplesize = 2000)
dist_clstr <- geodist(pts_clustered,co.ee,
sampling = "Fibonacci",
cvfolds = nndmfolds_clstr$indx_test,
cvtrain = nndmfolds_clstr$indx_train)
plot(dist_clstr, unit = "km")+scale_x_log10(labels=round)
## ----message = FALSE, warning=FALSE, results='hide'---------------------------
nndmfolds_rand <- nndm(pts_random_co, modeldomain=co.ee, samplesize = 2000)
dist_rand <- geodist(pts_random_co,co.ee,
sampling = "Fibonacci",
cvfolds = nndmfolds_rand$indx_test,
cvtrain = nndmfolds_rand$indx_train)
plot(dist_rand, unit = "km")+scale_x_log10(labels=round)
## ----message = FALSE, warning=FALSE, results='hide'---------------------------
knndmfolds_clstr <- knndm(pts_clustered, modeldomain=co.ee, samplesize = 2000)
pts_clustered$knndmCV <- as.character(knndmfolds_clstr$clusters)
ggplot() + geom_sf(data = co.ee, fill="#00BFC4",col="#00BFC4") +
geom_sf(data = pts_clustered, aes(color=knndmCV),size=0.5, shape=3) +
scale_color_manual(values=rainbow(length(unique(pts_clustered$knndmCV))))+
guides(fill = FALSE, col = FALSE) +
labs(x = NULL, y = NULL)+ ggtitle("spatial fold membership by color")
dist_clstr <- geodist(pts_clustered,co.ee,
sampling = "Fibonacci",
cvfolds = knndmfolds_clstr$indx_test,
cvtrain = knndmfolds_clstr$indx_train)
plot(dist_clstr, unit = "km")+scale_x_log10(labels=round)
## ----message = FALSE, warning=FALSE, results='hide'---------------------------
predictors_global <- worldclim_global(var="bio",res = 10,path=tempdir())
names(predictors_global) <- c(paste0("bio_",1:19))
predictors_global <- predictors_global[[c("bio_2", "bio_10", "bio_13", "bio_19")]]
plot(predictors_global)
## ----message = FALSE, warning=FALSE, results='hide'---------------------------
# use random CV:
dist_clstr_rCV <- geodist(pts_clustered,predictors_global,
type = "feature",
sampling="Fibonacci",
cvfolds = randomfolds)
# use spatial CV:
dist_clstr_sCV <- geodist(pts_clustered,predictors_global,
type = "feature", sampling="Fibonacci",
cvfolds = spatialfolds$indexOut)
# Plot results:
plot(dist_clstr_rCV)+scale_x_log10()+ggtitle("Clustered reference data and random CV")
plot(dist_clstr_sCV)+scale_x_log10()+ggtitle("Clustered reference data and spatial CV")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.