View source: R/numerical_Hessian.R
numerical_Hessian | R Documentation |
Computes numerically the Hessian matrix of a given function for
all coordinates (numerical_Hessian
), for a selected
direction (numerical_Hessian_partial
) or the gradient
of a multivariate function (numerical_gradient
).
numerical_Hessian(par, FUN, h=1e-05, gradient=FALSE, hessian=TRUE, diag_only=FALSE, ...) numerical_Hessian_partial(par, FUN, h=1e-05, coordinate=1, ... ) numerical_gradient(par, FUN, h=1E-5, ...)
par |
Parameter vector |
FUN |
Specified function with argument vector |
h |
Numerical differentiation parameter. Can be also a vector. The increment in the numerical approximation of the derivative is defined as h_i \max ( 1, θ_i) where θ_i denotes the ith parameter. |
gradient |
Logical indicating whether the gradient should be calculated. |
hessian |
Logical indicating whether the Hessian matrix should be calculated. |
diag_only |
Logical indicating whether only the diagonal of the hessian should be computed. |
... |
Further arguments to be passed to |
coordinate |
Coordinate index for partial derivative |
Gradient vector or Hessian matrix or a list of both elements
See the numDeriv package and the
mirt::numerical_deriv
function from the mirt package.
############################################################################# # EXAMPLE 1: Toy example for Hessian matrix ############################################################################# # define function f <- function(x){ 3*x[1]^3 - 4*x[2]^2 - 5*x[1]*x[2] + 10 * x[1] * x[3]^2 + 6*x[2]*sqrt(x[3]) } # define point for evaluating partial derivatives par <- c(3,8,4) #--- compute gradient CDM::numerical_Hessian( par=par, FUN=f, gradient=TRUE, hessian=FALSE) ## Not run: mirt::numerical_deriv(par=par, f=f, gradient=TRUE) #--- compute Hessian matrix CDM::numerical_Hessian( par=par, FUN=f ) mirt::numerical_deriv(par=par, f=f, gradient=FALSE) numerical_Hessian( par=par, FUN=f, h=1E-4 ) #--- compute gradient and Hessian matrix CDM::numerical_Hessian( par=par, FUN=f, gradient=TRUE, hessian=TRUE) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.