predict | R Documentation |
This function computes expected values for each person and each item based on the individual posterior distribution. The output of this function can be the basis of creating item and person fit statistics.
IRT.predict(object, dat, group=1) ## S3 method for class 'din' predict(object, group=1, ...) ## S3 method for class 'gdina' predict(object, group=1, ...) ## S3 method for class 'mcdina' predict(object, group=1, ...) ## S3 method for class 'gdm' predict(object, group=1, ...) ## S3 method for class 'slca' predict(object, group=1, ...)
object |
Object for the S3 methods |
dat |
Dataset with item responses |
group |
Group index for use |
... |
Further arguments to be passed. |
A list with following entries
expected |
Array with expected values (persons \times classes \times items) |
probs.categ |
Array with expected probabilities for each category (persons \times categories \times classes \times items) |
variance |
Array with variance in predicted values for each person and each item. |
residuals |
Array with residuals for each person and each item |
stand.resid |
Array with standardized residuals for each person and each item |
## Not run: ############################################################################# # EXAMPLE 1: Fitted Rasch model in TAM package ############################################################################# #--- Model 1: Rasch model library(TAM) mod1 <- TAM::tam.mml(resp=TAM::sim.rasch) # apply IRT.predict function prmod1 <- CDM::IRT.predict(mod1, mod1$resp ) str(prmod1) ## End(Not run) ############################################################################# # EXAMPLE 2: Predict function for din ############################################################################# # DINA Model mod1 <- CDM::din( CDM::sim.dina, q.matr=CDM::sim.qmatrix, rule="DINA" ) summary(mod1) # apply predict method prmod1 <- CDM::IRT.predict( mod1, sim.dina ) str(prmod1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.