reglca | R Documentation |
Estimates the regularized latent class model for dichotomous responses based on regularization methods (Chen, Liu, Xu, & Ying, 2015; Chen, Li, Liu, & Ying, 2017). The SCAD and MCP penalty functions are available.
reglca(dat, nclasses, weights=NULL, group=NULL, regular_type="scad", regular_lam=0, sd_noise_init=1, item_probs_init=NULL, class_probs_init=NULL, random_starts=1, random_iter=20, conv=1e-05, h=1e-04, mstep_iter=10, maxit=1000, verbose=TRUE, prob_min=.0001) ## S3 method for class 'reglca' summary(object, digits=4, file=NULL, ...)
dat |
Matrix with dichotomous item responses. |
nclasses |
Number of classes |
weights |
Optional vector of sampling weights |
group |
Optional vector for grouping variable |
regular_type |
Regularization type. Can be |
regular_lam |
Regularization parameter λ |
sd_noise_init |
Standard deviation for amount of noise in generating random starting values |
item_probs_init |
Optional matrix of initial item response probabilities |
class_probs_init |
Optional vector of class probabilities |
random_starts |
Number of random starts |
random_iter |
Number of initial iterations for random starts |
conv |
Convergence criterion |
h |
Numerical differentiation parameter |
mstep_iter |
Number of iterations in the M-step |
maxit |
Maximum number of iterations |
verbose |
Logical indicating whether convergence progress should be displayed |
prob_min |
Lower bound for probabilities in estimation |
object |
A required object of class |
digits |
Number of digits after decimal separator to display. |
file |
Optional file name for a file in which |
... |
Further arguments to be passed. |
The regularized latent class model for dichotomous item responses assumes C latent classes. The item response probabilities P(X_i=1|c)=p_{ic} are estimated in such a way such that the number of different p_{ic} values per item is minimized. This approach eases interpretability and enables to recover the structure of a true (but unknown) cognitive diagnostic model.
A list containing following elements (selection):
item_probs |
Item response probabilities |
class_probs |
Latent class probabilities |
p.aj.xi |
Individual posterior |
p.xi.aj |
Individual likelihood |
loglike |
Log-likelihood value |
Npars |
Number of estimated parameters |
Nskillpar |
Number of skill class parameters |
G |
Number of groups |
n.ik |
Expected counts |
Nipar |
Number of item parameters |
n_reg |
Number of regularized parameters |
n_reg_item |
Number of regularized parameters per item |
item |
Data frame with item parameters |
pjk |
Item response probabilities (in an array) |
N |
Number of persons |
I |
Number of items |
Chen, Y., Liu, J., Xu, G., & Ying, Z. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110, 850-866.
Chen, Y., Li, X., Liu, J., & Ying, Z. (2017). Regularized latent class analysis with application in cognitive diagnosis. Psychometrika, 82, 660-692.
See also the gdina
and slca
functions
for regularized estimation.
## Not run: ############################################################################# # EXAMPLE 1: Estimating a regularized LCA for DINA data ############################################################################# #---- simulate data I <- 12 # number of items # define Q-matrix q.matrix <- matrix(0,I,2) q.matrix[ 1:(I/3), 1 ] <- 1 q.matrix[ I/3 + 1:(I/3), 2 ] <- 1 q.matrix[ 2*I/3 + 1:(I/3), c(1,2) ] <- 1 N <- 1000 # number of persons guess <- rep(seq(.1,.3,length=I/3), 3) slip <- .1 rho <- 0.3 # skill correlation set.seed(987) dat <- CDM::sim.din( N=N, q.matrix=q.matrix, guess=guess, slip=slip, mean=0*c( .2, -.2 ), Sigma=matrix( c( 1, rho,rho,1), 2, 2 ) ) dat <- dat$dat #--- Model 1: Four latent classes without regularization mod1 <- CDM::reglca(dat=dat, nclasses=4, regular_lam=0, random_starts=3, random_iter=10, conv=1E-4) summary(mod1) #--- Model 2: Four latent classes with regularization and lambda=.08 mod2 <- CDM::reglca(dat=dat, nclasses=4, regular_lam=0.08, regular_type="scad", random_starts=3, random_iter=10, conv=1E-4) summary(mod2) #--- Model 3: Four latent classes with regularization and lambda=.05 with warm start # "warm start" -> use initial parameters from fitted model with higher lambda value item_probs_init <- mod2$item_probs class_probs_init <- mod2$class_probs mod3 <- CDM::reglca(dat=dat, nclasses=4, regular_lam=0.05, regular_type="scad", item_probs_init=item_probs_init, class_probs_init=class_probs_init, random_starts=3, random_iter=10, conv=1E-4) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.