vcov | R Documentation |
Computes the asymptotic covariance matrix for
din
objects. The covariance matrix is computed using the
empirical cross-product approach (see Paek & Cai, 2014).
In addition, an S3 method IRT.se
is defined which produces
an extended output including vcov
and confint
.
## S3 method for class 'din' vcov(object, extended=FALSE, infomat=FALSE,ind.item.skillprobs=TRUE, ind.item=FALSE, diagcov=FALSE, h=.001,...) ## S3 method for class 'din' confint(object, parm, level=.95, extended=FALSE, ind.item.skillprobs=TRUE, ind.item=FALSE, diagcov=FALSE, h=.001, ... ) IRT.se(object, ...) ## S3 method for class 'din' IRT.se( object, extended=FALSE, parm=NULL, level=.95, infomat=FALSE, ind.item.skillprobs=TRUE, ind.item=FALSE, diagcov=FALSE, h=.001, ... )
object |
An object inheriting from class |
extended |
An optional logical indicating whether the covariance matrix should be calculated for an extended set of parameters (estimated and derived parameters). |
infomat |
An optional logical indicating whether the information matrix instead of the covariance matrix should be the output. |
ind.item.skillprobs |
Optional logical indicating whether the covariance between item parameters and skill class probabilities are assumed to be zero. |
ind.item |
Optional logical indicating whether covariances of item parameters between different items are zero. |
diagcov |
Optional logical indicating whether all covariances between estimated parameters are set to zero. |
h |
Parameter used for numerical differentiation for computing the derivative of the log-likelihood function. |
parm |
Vector of parameters. If it is missing, then for all estimated parameters a confidence interval is calculated. |
level |
Confidence level |
... |
Additional arguments to be passed. |
coef
: A vector of parameters.
vcov
: A covariance matrix. The corresponding coefficients can be extracted
as the attribute coef
from this object.
IRT.se
: A data frame containing coefficients, standard errors
and confidence intervals for all parameters.
Paek, I., & Cai, L. (2014). A comparison of item parameter standard error estimation procedures for unidimensional and multidimensional item response theory modeling. Educational and Psychological Measurement, 74(1), 58-76.
din
, coef.din
## Not run: ############################################################################# # EXAMPLE 1: DINA model sim.dina ############################################################################# data(sim.dina, package="CDM") data(sim.qmatrix, package="CDM") dat <- sim.dina q.matrix <- sim.qmatrix #****** Model 1: DINA Model mod1 <- CDM::din( dat, q.matrix=q.matrix, rule="DINA") # look into parameter table of the model mod1$partable # covariance matrix covmat1 <- vcov(mod1 ) # extract coefficients coef(mod1) # extract standard errors sqrt( diag( covmat1)) # compute confidence intervals confint( mod1, level=.90 ) # output table with standard errors IRT.se( mod1, extended=TRUE ) #****** Model 2: Constrained DINA Model # fix some slipping parameters constraint.slip <- cbind( c(2,3,5), c(.15,.20,.25) ) # set some skill class probabilities to zero zeroprob.skillclasses <- c(2,4) # estimate model mod2 <- CDM::din( dat, q.matrix=q.matrix, guess.equal=TRUE, constraint.slip=constraint.slip, zeroprob.skillclasses=zeroprob.skillclasses) # parameter table mod2$partable # freely estimated coefficients coef(mod2) # covariance matrix (estimated parameters) vmod2a <- vcov(mod2) sqrt( diag( vmod2a)) # standard errors colnames( vmod2a ) names( attr( vmod2a, "coef") ) # extract coefficients # covariance matrix (more parameters, extended=TRUE) vmod2b <- vcov(mod2, extended=TRUE) sqrt( diag( vmod2b)) attr( vmod2b, "coef") # attach standard errors to parameter table partable2 <- mod2$partable partable2 <- partable2[ ! duplicated( partable2$parnames ), ] partable2 <- data.frame( partable2, "se"=sqrt( diag( vmod2b)) ) partable2 # confidence interval for parameter "skill1" which is not in the model # cannot be calculated! confint(mod2, parm=c( "skill1", "all_guess" ) ) # confidence interval for only some parameters confint(mod2, parm=paste0("prob_skill", 1:3 ) ) # compute only information matrix infomod2 <- vcov(mod2, infomat=TRUE) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.