BiCopPar2TailDep: Tail dependence coefficients of a bivariate copula

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/BiCopPar2TailDep.r

Description

This function computes the theoretical tail dependence coefficients of a bivariate copula for given parameter values.

Usage

1

Arguments

family

An integer defining the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; “survival Clayton”)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
17 = rotated BB1 copula (180 degrees; “survival BB1”)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 = rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
27 = rotated BB1 copula (90 degrees)
28 = rotated BB6 copula (90 degrees)
29 = rotated BB7 copula (90 degrees)
30 = rotated BB8 copula (90 degrees)
33 = rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)
37 = rotated BB1 copula (270 degrees)
38 = rotated BB6 copula (270 degrees)
39 = rotated BB7 copula (270 degrees)
40 = rotated BB8 copula (270 degrees)

par

Copula parameter.

par2

Second parameter for the two parameter t-, BB1, BB6, BB7 and BB8 copulas (default: par2 = 0).

Value

lower

Lower tail dependence coefficient of the given bivariate copula family C:

λ_L = lim_{u->0} C(u,u)/u

upper

Upper tail dependence coefficient of the given bivariate copula family C:

λ_U = lim_{u->1}(1-2u+C(u,u))/(1-u)

Lower and upper tail dependence coefficients for bivariate copula families and parameters (θ for one parameter families and the first parameter of the t-copula with ν degrees of freedom, θ and δ for the two parameter BB1, BB6, BB7 and BB8 copulas) are given in the following table.

No. Lower tail dependence Upper tail dependence
1 - -
2 2t_{ν+1}(-√{ν+1}√{(1-θ)/(1+θ)}) 2t_{ν+1}(-√{ν+1}√{(1-θ)/(1+θ)})
3 2^{-1/θ} -
4 - 2-2^{1/θ}
5 - -
6 - 2-2^{1/θ}
7 2^{-1/(θδ)} 2-2^{1/δ}
8 - 2-2^{1/(θδ)}
9 2^{-1/δ} 2-2^{1/θ}
10 - 2-2^{1/θ} if δ=1 otherwise 0
13 - 2^{-1/θ}
14 2-2^{1/θ} -
16 2-2^{1/θ} -
17 2-2^{1/δ} 2^{-1/(θδ)}
18 2-2^{1/(θδ)} -
19 2-2^{1/θ} 2^{-1/δ}
20 2-2^{1/θ} if δ=1 otherwise 0 -
23, 33 - -
24, 34 - -
26, 36 - -
27, 37 - -
28, 38 - -
29, 39 - -
30, 40 - -

Author(s)

Eike Brechmann

References

Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.

See Also

BiCopPar2Tau

Examples

1
2
3
4
5
## Example 1: Gaussian copula
BiCopPar2TailDep(1,0.7)

## Example 2: t copula
BiCopPar2TailDep(2,0.7,4)

Example output

The CDVine package is no longer developed actively.
Please consider using the more general VineCopula package
(see https://CRAN.R-project.org/package=VineCopula),
which extends and improves the functionality of CDVine.

$lower
[1] 0

$upper
[1] 0

$lower
[1] 0.390684

$upper
[1] 0.390684

CDVine documentation built on May 2, 2019, 9:28 a.m.