Description Usage Arguments Details Value Author(s) References See Also Examples
These functions calculate the Akaike and Bayesian Information criteria of d-dimensional C- and D-vine copula models for a given copula data set.
1 2 3 4 |
data |
An N x d data matrix (with uniform margins). |
family |
A d*(d-1)/2 integer vector of C-/D-vine pair-copula families with values |
par |
A d*(d-1)/2 vector of pair-copula parameters. |
par2 |
A d*(d-1)/2 vector of second parameters for two parameter pair-copula families
(default: |
type |
Type of the vine model: |
If k denotes the number of parameters of a C-vine copula model with log-likelihood l_{CVine} and parameter set θ, then the Akaike Information Criterion (AIC) by Akaike (1973) is defined as
AIC := -2 l_{CVine}(θ|u) + 2 k,
for observations u=(u'_1,...u'_N).
Similarly, the Bayesian Information Criterion (BIC) by Schwarz (1978) is given by
BIC := -2 l_{CVine}(θ|u) + log(N) k.
The AIC and BIC expressions for D-vine copula models are defined accordingly.
AIC, BIC |
The computed AIC or BIC value, respectively. |
pair.AIC, pair.BIC |
An array of individual contributions to the AIC or BIC value
for each pair-copula, respectively. Note: |
Eike Brechmann
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov and F. Csaki (Eds.), Proceedings of the Second International Symposium on Information Theory Budapest, Akademiai Kiado, pp. 267-281.
Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics 6 (2), 461-464.
CDVineLogLik
, CDVineVuongTest
, CDVineClarkeTest
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | ## Example 1: 3-dimensional D-vine model with Gaussian pair-copulas
data(worldindices)
Data = as.matrix(worldindices)[,1:3]
fam1 = c(1,1,1)
par1 = c(0.2,0.3,0.4)
# calculate AIC and BIC
CDVineAIC(Data,fam1,par1,type=2)
CDVineBIC(Data,fam1,par1,type=2)
## Example 2: 6-dimensional C-vine model with Student t pair-copulas
## with 5 degrees of freedom
data(worldindices)
Data = as.matrix(worldindices)
dd = dim(Data)[2]*(dim(Data)[2]-1)/2
fam2 = rep(2,dd)
par2 = rep(0.5,dd)
nu2 = rep(5,dd)
# calculate AIC and BIC
CDVineAIC(Data,fam2,par2,nu2,type=1)
CDVineBIC(Data,fam2,par2,nu2,type=1)
## Example 3: 4-dimensional C-vine model with mixed pair-copulas
fam3 = c(5,1,3,14,3,2)
par3 = c(0.9,0.3,0.2,1.1,0.2,0.7)
nu3 = c(0,0,0,0,0,7)
# calculate AIC and BIC
CDVineAIC(Data[,1:4],fam3,par3,nu3,type=1)
CDVineBIC(Data[,1:4],fam3,par3,nu3,type=1)
|
The CDVine package is no longer developed actively.
Please consider using the more general VineCopula package
(see https://CRAN.R-project.org/package=VineCopula),
which extends and improves the functionality of CDVine.
$AIC
[1] -18.36512
$pair.AIC
[1] -14.83439 -42.40985 38.87912
$BIC
[1] -6.420878
$pair.BIC
[1] -10.85297 -38.42844 42.86053
$AIC
[1] -1230.874
$pair.AIC
[1] 51.064455 49.564629 -275.064075 -275.661120 -260.698047 -9.477981
[7] 117.258206 88.256120 109.304104 133.670869 143.605391 134.791573
[13] -560.747289 -470.809333 -205.931355
$BIC
[1] -1111.431
$pair.BIC
[1] 59.027283 57.527458 -267.101246 -267.698291 -252.735219 -1.515153
[7] 125.221035 96.218948 117.266932 141.633697 151.568219 142.754402
[13] -552.784461 -462.846504 -197.968527
$AIC
[1] 179.9519
$pair.AIC
[1] -7.094134 -3.092514 -100.740776 -26.419653 -12.400389 329.699337
$BIC
[1] 207.8218
$pair.BIC
[1] -3.1127195 0.8889002 -96.7593621 -22.4382391 -8.4189752 337.6621655
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.