Description Usage Arguments Details Value Author(s) References See Also Examples
This function sequentially estimates the pair-copula parameters of d-dimensional C- or D-vine copula models.
1 2 3 |
data |
An N x d data matrix (with uniform margins). |
family |
A d*(d-1)/2 integer vector of C-/D-vine pair-copula families with values |
type |
Type of the vine model: |
method |
Character indicating the estimation method:
either pairwise maximum likelihood estimation ( |
se |
Logical; whether standard errors are estimated (default: |
max.df |
Numeric; upper bound for the estimation of the degrees of freedom parameter of the t-copula
(default: |
max.BB |
List; upper bounds for the estimation of the two parameters (in absolute values) of the BB1, BB6, BB7 and BB8 copulas |
progress |
Logical; whether the pairwise estimation progress is printed (default: |
The pair-copula parameter estimation is performed tree-wise,
i.e., for each C-/D-vine tree the results from the previous tree(s) are used
to calculate the new copula parameters using BiCopEst
.
par |
Estimated (first) C-/D-vine pair-copula parameters. |
par2 |
Estimated second C-/D-vine pair-copula parameters for families with two parameters (t, BB1, BB6, BB7, BB8). All other entries are zero. |
se |
Estimated standard errors of the (first) pair-copula parameter estimates |
se2 |
Estimated standard errors of the second pair-copula parameter estimates |
Carlos Almeida, Ulf Schepsmeier
Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44 (2), 182-198.
Czado, C., U. Schepsmeier, and A. Min (2012). Maximum likelihood estimation of mixed C-vines with application to exchange rates. Statistical Modelling, 12(3), 229-255.
BiCopEst
, BiCopHfunc
, CDVineLogLik
, CDVineMLE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## Example 1: 4-dimensional D-vine model with Gaussian pair-copulas
data(worldindices)
Data = as.matrix(worldindices)[,1:4]
d = dim(Data)[2]
fam = rep(1,d*(d-1)/2)
# sequential estimation
CDVineSeqEst(Data,fam,type=2,method="itau")$par
CDVineSeqEst(Data,fam,type=2,method="mle")$par
## Example 2: 4-dimensional D-vine model with mixed pair-copulas
fam2 = c(5,1,3,14,3,2)
# sequential estimation
CDVineSeqEst(Data,fam2,type=2,method="mle",se=TRUE,progress=TRUE)
|
The CDVine package is no longer developed actively.
Please consider using the more general VineCopula package
(see https://CRAN.R-project.org/package=VineCopula),
which extends and improves the functionality of CDVine.
[1] 0.1599446 0.3122243 0.1901583 0.1153481 0.1945338 0.6941092
[1] 0.2017503 0.3246330 0.1901583 0.1190999 0.2154168 0.7265423
1,2
2,3
3,4
1,3|2
2,4|3
1,4|2,3
$par
[1] 0.9154534 0.3246330 0.1916378 1.0688747 0.2340853 0.7185443
$par2
[1] 0.000000 0.000000 0.000000 0.000000 0.000000 7.802587
$se
[1] 0.30291987 0.04249825 0.06049709 0.02975006 0.06241570 0.02439815
$se2
[1] 0.000000 0.000000 0.000000 0.000000 0.000000 4.374521
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.