CDVineSeqEst: Sequential estimation of C- and D-vine copula models

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/CDVineSeqEst.R

Description

This function sequentially estimates the pair-copula parameters of d-dimensional C- or D-vine copula models.

Usage

1
2
3
CDVineSeqEst(data, family, type, method="mle", se=FALSE, max.df=30,
             max.BB=list(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1)),
             progress=FALSE)

Arguments

data

An N x d data matrix (with uniform margins).

family

A d*(d-1)/2 integer vector of C-/D-vine pair-copula families with values
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; “survival Clayton”)
14 = rotated Gumbel copula (180 degrees; “survival Gumbel”)
16 = rotated Joe copula (180 degrees; “survival Joe”)
17 = rotated BB1 copula (180 degrees; “survival BB1”)
18 = rotated BB6 copula (180 degrees; “survival BB6”)
19 = rotated BB7 copula (180 degrees; “survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
24 = rotated Gumbel copula (90 degrees)
26 = rotated Joe copula (90 degrees)
27 = rotated BB1 copula (90 degrees)
28 = rotated BB6 copula (90 degrees)
29 = rotated BB7 copula (90 degrees)
30 = rotated BB8 copula (90 degrees)
33 = rotated Clayton copula (270 degrees)
34 = rotated Gumbel copula (270 degrees)
36 = rotated Joe copula (270 degrees)
37 = rotated BB1 copula (270 degrees)
38 = rotated BB6 copula (270 degrees)
39 = rotated BB7 copula (270 degrees)
40 = rotated BB8 copula (270 degrees)

type

Type of the vine model:
1 or "CVine" = C-vine
2 or "DVine" = D-vine

method

Character indicating the estimation method: either pairwise maximum likelihood estimation (method = "mle"; default) or inversion of Kendall's tau (method = "itau"; see BiCopEst). For method = "itau" only one parameter pair-copula families can be used (family = 1, 3, 4, 5, 6, 13, 14, 16, 23, 24, 26, 33, 34 or 36).

se

Logical; whether standard errors are estimated (default: se=FALSE).

max.df

Numeric; upper bound for the estimation of the degrees of freedom parameter of the t-copula (default: max.df = 30; for more details see BiCopEst).

max.BB

List; upper bounds for the estimation of the two parameters (in absolute values) of the BB1, BB6, BB7 and BB8 copulas
(default: max.BB = list(BB1=c(5,6),BB6=c(6,6),BB7=c(5,6),BB8=c(6,1))).

progress

Logical; whether the pairwise estimation progress is printed (default: progress = FALSE).

Details

The pair-copula parameter estimation is performed tree-wise, i.e., for each C-/D-vine tree the results from the previous tree(s) are used to calculate the new copula parameters using BiCopEst.

Value

par

Estimated (first) C-/D-vine pair-copula parameters.

par2

Estimated second C-/D-vine pair-copula parameters for families with two parameters (t, BB1, BB6, BB7, BB8). All other entries are zero.

se

Estimated standard errors of the (first) pair-copula parameter estimates
(if se = TRUE).

se2

Estimated standard errors of the second pair-copula parameter estimates
(if se = TRUE).

Author(s)

Carlos Almeida, Ulf Schepsmeier

References

Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44 (2), 182-198.

Czado, C., U. Schepsmeier, and A. Min (2012). Maximum likelihood estimation of mixed C-vines with application to exchange rates. Statistical Modelling, 12(3), 229-255.

See Also

BiCopEst, BiCopHfunc, CDVineLogLik, CDVineMLE

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
## Example 1: 4-dimensional D-vine model with Gaussian pair-copulas
data(worldindices)
Data = as.matrix(worldindices)[,1:4]
d = dim(Data)[2]
fam = rep(1,d*(d-1)/2)

# sequential estimation 
CDVineSeqEst(Data,fam,type=2,method="itau")$par
CDVineSeqEst(Data,fam,type=2,method="mle")$par


## Example 2: 4-dimensional D-vine model with mixed pair-copulas
fam2 = c(5,1,3,14,3,2)

# sequential estimation
CDVineSeqEst(Data,fam2,type=2,method="mle",se=TRUE,progress=TRUE)

Example output

The CDVine package is no longer developed actively.
Please consider using the more general VineCopula package
(see https://CRAN.R-project.org/package=VineCopula),
which extends and improves the functionality of CDVine.

[1] 0.1599446 0.3122243 0.1901583 0.1153481 0.1945338 0.6941092
[1] 0.2017503 0.3246330 0.1901583 0.1190999 0.2154168 0.7265423
1,2
2,3
3,4
1,3|2
2,4|3
1,4|2,3
$par
[1] 0.9154534 0.3246330 0.1916378 1.0688747 0.2340853 0.7185443

$par2
[1] 0.000000 0.000000 0.000000 0.000000 0.000000 7.802587

$se
[1] 0.30291987 0.04249825 0.06049709 0.02975006 0.06241570 0.02439815

$se2
[1] 0.000000 0.000000 0.000000 0.000000 0.000000 4.374521

CDVine documentation built on May 2, 2019, 9:28 a.m.