Description Usage Arguments Value Author(s) References See Also Examples
This function calculates the MLE of C- or D-vine copula model parameters using sequential estimates as initial values (if not provided).
1 2 |
data |
An N x d data matrix (with uniform margins). |
family |
A d*(d-1)/2 integer vector of C-/D-vine pair-copula families with values |
start |
A d*(d-1)/2 numeric vector of starting values for C-/D-vine pair-copula parameters
(optional; otherwise they are calculated via |
start2 |
A d*(d-1)/2 numeric vector of starting values for second C-/D-vine pair-copula parameters
(optional; otherwise they are calculated via |
type |
Type of the vine model: |
maxit |
The maximum number of iteration steps (optional; default: |
max.df |
Numeric; upper bound for the estimation of the degrees of freedom parameter of the t-copula
(default: |
max.BB |
List; upper bounds for the estimation of the two parameters (in absolute values) of the BB1, BB6, BB7 and BB8 copulas |
... |
Additional control parameters for |
par |
Estimated (first) C-/D-vine pair-copula parameters. |
par2 |
Estimated second C-/D-vine pair-copula parameters for families with two parameters (t, BB1,BB6, BB7, BB8). All other entries are zero. |
loglik |
Optimized log-likelihood value corresponding to the estimated pair-copula parameters. |
convergence |
An integer code indicating either successful convergence ( |
message |
A character string giving any additional information returned by |
Carlos Almeida, Ulf Schepsmeier
Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44 (2), 182-198.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | ## Example 1: 4-dimensional D-vine model with Gaussian pair-copulas
data(worldindices)
Data = as.matrix(worldindices)[,1:4]
fam = rep(1,6)
# maximum likelihood estimation
## Not run:
CDVineMLE(Data,family=fam,type=2,maxit=100)
## End(Not run)
## Example 2: 4-dimensional D-vine model with mixed pair-copulas
fam2 = c(5,1,3,14,3,2)
# sequential estimation
m = CDVineSeqEst(Data,family=fam2,type=2)
m
# calculate the log-likelihood
LogLik0 = CDVineLogLik(Data,fam2,m$par,m$par2,type=2)
LogLik0$loglik
# maximum likelihood estimation
## Not run:
CDVineMLE(Data,family=fam2,type=2,maxit=5) # 5 iterations
CDVineMLE(Data,family=fam2,type=2) # default: 200 iterations
## End(Not run)
|
The CDVine package is no longer developed actively.
Please consider using the more general VineCopula package
(see https://CRAN.R-project.org/package=VineCopula),
which extends and improves the functionality of CDVine.
$par
[1] 0.2014844 0.3243304 0.1894926 0.1191447 0.2154987 0.7265817
$par2
[1] 0 0 0 0 0 0
$loglik
[1] 201.1419
$counts
function gradient
7 7
$convergence
[1] 0
$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
$par
[1] 0.9154534 0.3246330 0.1916378 1.0688747 0.2340853 0.7185443
$par2
[1] 0.000000 0.000000 0.000000 0.000000 0.000000 7.802587
[1] 198.2273
$par
[1] 0.8552650 0.3243652 0.1962937 1.0725591 0.1668017 0.7219322
$par2
[1] 0.000000 0.000000 0.000000 0.000000 0.000000 7.802131
$loglik
[1] 199.0857
$counts
function gradient
8 8
$convergence
[1] 1
$message
[1] "NEW_X"
$par
[1] 0.6492769 0.3077149 0.1822637 1.0705138 0.1478432 0.7254859
$par2
[1] 0.00000 0.00000 0.00000 0.00000 0.00000 7.38417
$loglik
[1] 199.4444
$counts
function gradient
43 43
$convergence
[1] 0
$message
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.