Description Usage Arguments Details Value Author(s) References See Also Examples
This function evaluates the conditional distribution function (h-function) of a given parametric bivariate copula.
1 | BiCopHfunc(u1, u2, family, par, par2=0)
|
u1,u2 |
Numeric vectors of equal length with values in [0,1]. |
family |
An integer defining the bivariate copula family: |
par |
Copula parameter. |
par2 |
Second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8; default: |
The h-function is defined as the conditional distribution function of a bivariate copula, i.e.,
h(u|v,θ) := F(u|v) = \partial C(u,v) / \partial v,
where C is a bivariate copula distribution function with parameter(s) θ. For more details see Aas et al. (2009).
hfunc1 |
Numeric vector of the conditional distribution function (h-function) evaluated at |
hfunc2 |
Numeric vector of the conditional distribution function (h-function) evaluated at |
Ulf Schepsmeier
Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44 (2), 182-198.
BiCopPDF
, BiCopCDF
, CDVineLogLik
, CDVineSeqEst
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | ## Example 1: 4-dimensional C-vine model with mixed pair-copulas
data(worldindices)
Data = as.matrix(worldindices)[,1:4]
d = dim(Data)[2]
fam = c(5,1,3,14,3,2)
# sequential estimation
seqpar1 = CDVineSeqEst(Data,fam,type=1,method="itau")
# calculate the inputs of the second tree using h-functions
h1 = BiCopHfunc(Data[,1],Data[,2],fam[1],seqpar1$par[1])
h2 = BiCopHfunc(Data[,1],Data[,3],fam[2],seqpar1$par[2])
h3 = BiCopHfunc(Data[,1],Data[,4],fam[3],seqpar1$par[3])
# compare estimated parameters
BiCopEst(h1$hfunc1,h2$hfunc1,fam[4],method="itau")
seqpar1$par[4]
BiCopEst(h1$hfunc1,h3$hfunc1,fam[5],method="itau")
seqpar1$par[5]
## Example 2: 4-dimensional D-vine model with mixed pair-copulas
# sequential estimation
seqpar2 = CDVineSeqEst(Data,fam,type=2,method="itau")
# calculate the inputs of the second tree using h-functions
h1 = BiCopHfunc(Data[,1],Data[,2],fam[1],seqpar2$par[1])
h2 = BiCopHfunc(Data[,2],Data[,3],fam[2],seqpar2$par[2])
h3 = BiCopHfunc(Data[,3],Data[,4],fam[3],seqpar2$par[3])
# compare estimated parameters
BiCopEst(h1$hfunc2,h2$hfunc1,fam[4],method="itau")
seqpar2$par[4]
BiCopEst(h2$hfunc2,h3$hfunc1,fam[5],method="itau")
seqpar2$par[5]
|
The CDVine package is no longer developed actively.
Please consider using the more general VineCopula package
(see https://CRAN.R-project.org/package=VineCopula),
which extends and improves the functionality of CDVine.
For two parameter copulas the estimation method 'itau' cannot be used. The method is automatically set to 'mle'.
$par
[1] 1.239108
$par2
[1] 0
[1] 1.239108
$par
[1] 0.1655822
$par2
[1] 0
[1] 0.1655822
For two parameter copulas the estimation method 'itau' cannot be used. The method is automatically set to 'mle'.
$par
[1] 1.080577
$par2
[1] 0
[1] 1.080577
$par
[1] 0.2578596
$par2
[1] 0
[1] 0.2578596
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.